Introducing a System-on-Chip (SoC) microcontroller (C8051F350) into a ceramic pressure sensor has resulted in the design of a intelligent sensor. An improved algorithm for digital phassensitive detection is used ...Introducing a System-on-Chip (SoC) microcontroller (C8051F350) into a ceramic pressure sensor has resulted in the design of a intelligent sensor. An improved algorithm for digital phassensitive detection is used to perform lock-in amplification of the sensor signal. The compensation for the sensor error is realized by the detection of the sensor's supply voltage and working temperature. The system also has the function of short/open circuit fault detection and can ommamicate with other digital equipment through an RS-485 communication interface. In the design, full utilization of the SoC microcontroller' s internal resource results in the simple hardware structure. Experimental results show that the error of the sensor is less than 0.5% at range ratio 1 : 10. Employing the microcontroller and using lock-in amplification algorithm are an effective method for achieving an intelligent sensor of slowly-varying physical quantities, thereby improving the measuring accuracy and performance.展开更多
基金supported by Research Project of "SUSTSpring Bud"(No.2008BWZ042)from Shandong University of Science and Technology
文摘Introducing a System-on-Chip (SoC) microcontroller (C8051F350) into a ceramic pressure sensor has resulted in the design of a intelligent sensor. An improved algorithm for digital phassensitive detection is used to perform lock-in amplification of the sensor signal. The compensation for the sensor error is realized by the detection of the sensor's supply voltage and working temperature. The system also has the function of short/open circuit fault detection and can ommamicate with other digital equipment through an RS-485 communication interface. In the design, full utilization of the SoC microcontroller' s internal resource results in the simple hardware structure. Experimental results show that the error of the sensor is less than 0.5% at range ratio 1 : 10. Employing the microcontroller and using lock-in amplification algorithm are an effective method for achieving an intelligent sensor of slowly-varying physical quantities, thereby improving the measuring accuracy and performance.