Internet of Things (IoT) refers to an infrastructure which enables the forms of com- munication and collaboration between people and things, and between things themselves. In order to improve its performance, we pre...Internet of Things (IoT) refers to an infrastructure which enables the forms of com- munication and collaboration between people and things, and between things themselves. In order to improve its performance, we present a tradeoff between bandwidth and energy con- sumption in the loT in this paper. A service providing model is built to find the relation- ship between bandwidth and energy consump- tion using a cooperative differential game mo- del. The game solution is gotten in the condi- tion of grand coalition, feedback Nash equili- brium and intermediate coalitions and an allo- cation policy is obtain by Shapley theory. The results are shown as follows. Firstly, the per- formance of IoT decreases with the increasing of bandwidth cost or with the decreasing of en- ergy cost; secondly, all the nodes in the IoT com- posing a grand coalition can save bandwidth and energy consumption; thirdly, when the fac- tors of bandwidth cost and energy cost are eq- ual, the obtained number of provided services is an optimised value which is the trade-off between energy and bandwidth consumption.展开更多
In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to...In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.展开更多
Nanocrystalline cobalt coatings were produced from cobalt sulfate based electrolytes by using pulse current electrodeposition technique.The effects of bath composition and electrodeposition condition on current effici...Nanocrystalline cobalt coatings were produced from cobalt sulfate based electrolytes by using pulse current electrodeposition technique.The effects of bath composition and electrodeposition condition on current efficiency,morphology,structure and hardness of the coatings were investigated and the optimum deposition condition was determined.It was found that increment of cobalt sulfate concentration and sodium dodecyl sulfate(SDS)concentration in the bath had a negligible effect on microhardness of the coatings,while they were effective on electrodeposition current efficiency.Adding saccharin to electrodeposition bath decreased crystallite size of hexagonal close-packed(hcp)cobalt films and increased their microhardness without significant effect on current efficiency.Smoother and less defective coatings were also obtained from baths containing SDS and saccharin.The results revealed that both the current efficiency and microhardness were changed by variation of peak current density and duty cycle.Besides change of smooth morphology of the coatings to needle-shaped one,crystallite sizes and preferred orientation also varied with increasing the current density and duty cycle.展开更多
Based on the transport phenomena theory, the passive mixing of water and ethanol in different threedimensional microchannels is simulated numerically. The average variance of water volume fraction is used to index the...Based on the transport phenomena theory, the passive mixing of water and ethanol in different threedimensional microchannels is simulated numerically. The average variance of water volume fraction is used to index the mixing efficiency in the cases with different Reynolds number and different fabricated mixers. The results show that the efficiency of liquid mixing is progressively dependent on the convective transport as the Reynolds number increases. The efficiency of serpentine microchannel decreases with the increasing Reynolds number in the laminar regime. Altering the aspect ratio of channel inlet section has no significant effect on the mixing efficiency. Increasing the area of channel inlet section will cause the decrease of the mixing efficiency. The mixing in serpentine channels is the most efficient among three different mixers because of the existence of second flow introduced by its special structure.展开更多
Microbial Inoculants as Effective Microorganisms (EM) were applied to find out their effects on germination and seedling growth of Albizia saman in the nursery. The seedlings were grown in a mixture of sandy soils a...Microbial Inoculants as Effective Microorganisms (EM) were applied to find out their effects on germination and seedling growth of Albizia saman in the nursery. The seedlings were grown in a mixture of sandy soils and cow dung (3:1) kept in polybags. The EM solution at different concentrations (0.1%, 0.5%, 1%, 2%, 5% and 10%) was incorporated before and after a week of sowing seeds. Germination and physical growth parameters, including shoot and root length, vigor index, collar diameter, leaf number, fresh and dry weight of shoot and root and total biomass increment over the control were measured. The nodulation status influenced by EM was also observed along with the estimation of chemical parameters like chlorophyll a, chlorophyll b and carotenoid. Both germination and the measured physical growth parameters were found significantly (P〈0.05) higher in seedlings treated with different concentrations of EM solution in comparison to the control. Maximum growth was found at 2% followed by 1% EM solution. Nodulation was higher at 0.1% concentration but it normally decreased with the increase of concentrations. Although there were a higher amount of pigments in leaves of the treated seedlings than of the control, the variations recorded with respect to chlorophyll a, b and carotenoid were not significantly higher in most of the treatments. Treated seedlings showed variable results along with the increment of EM applications and most of the parameters showed best results at the medium range of concentrations. The study indicates that the Microbial Inoculant (EM) technology might be useful to improve the growth of seedlings in the nursery. This also indicates that the associated beneficial organisms along with the polybag soils might be of value in improving the degraded soil or poor field soil for better nutrient and water uptake during the initial growth of transplanted seedlings.展开更多
The electrochemical dissolution and passivation of laser additive manufactured Ti6Al4V were investigated through Tafel polarization,potentiostatic polarization and AC impedance measurements.The results show that the s...The electrochemical dissolution and passivation of laser additive manufactured Ti6Al4V were investigated through Tafel polarization,potentiostatic polarization and AC impedance measurements.The results show that the solution treatment−aging(STA)process aggravates the element micro-segregation compared to the annealing process,leading to varied Al and V contents of the phases from different samples.It is proven that either Al-rich or V-rich condition can highly affect the electrochemical dissolution behaviors due to thermodynamical instability caused by element segregation.The dissolution rate in the metastable passivation process is controlled by the stability of the produced film that is affected by phases distribution,especially the difficult-to-dissolve phase.And then,the dissolution rate of the phases in the transpassivation region is consistent with the rank in the activation process because the dense film is not capable of being produced.Compared to the annealed sample,the higher dissolution rate of the STA sample is beneficial to the electrochemical machining(ECM)of Ti6Al4V.展开更多
Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of i...Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of inner diameter of 3 mm was studied by using a parallel competing iodide–iodate reaction as the working system.In this work,the effects of different operating conditions,such as impinging velocity and acid concentration,on segregation index were investigated.In addition,the effects of the inner nozzles diameter and the distance L between the jet axis and the top wall of the mixing chamber on the micromixing efficiency were also considered.It is concluded that the best range of L in this CIJR is 6.5–12.5 mm.Based on the incorporation model,the estimated minimum micromixing time tmof CIJR approximately equals to 2×10-4s.These experimental results indicate clearly that CIJR possesses a much better micromixing performance compared with the conventional stirred tank(micromixing time of 2×10-3to 2×10-2s).Hence,it can be envisioned that CIJR has more promising applications in various industrial processes.展开更多
Silicon carbide ceramics were prepared with SiC powder treated by the fluidized bed opposed jet mill as raw materials, and the effects of the ultra-fine treatment mechanism on the compaction and sintering behavior of ...Silicon carbide ceramics were prepared with SiC powder treated by the fluidized bed opposed jet mill as raw materials, and the effects of the ultra-fine treatment mechanism on the compaction and sintering behavior of SiC ceramics were investigated. The results showed that the compacts had higher density and microstructure homogeneity when the sintering temperature of the compact was decreased; and that the surface microstructure, densification and mechanical properties of the sintered body could be ameliorated obviously.展开更多
Lithium metal is one of the most promising anode materials for rechargeable battery with high energy density,but its practical use is still hindered by two main problems,namely,lithium dendrite growth and low Coulombi...Lithium metal is one of the most promising anode materials for rechargeable battery with high energy density,but its practical use is still hindered by two main problems,namely,lithium dendrite growth and low Coulombic efficiency.To address the issues,cesium nitrate(CsNO3)is selected as the additive to modify the electrolyte for lithium secondary battery.Here we report electrochemical performance of lithium secondary battery with different concentration of CsNO3 as electrolyte additive.The study result demonstrates that Coulombic efficiency of Li–Cu cells and the lifetime of symmetric lithium cells contained CsNO3 additive are improved greatly.Li–Cu cell with 0.05 mol/L CsNO3 and 0.15 mol/L LiNO3 as electrolyte additive presents the best electrochemical performance,having the highest Coulombic efficiency of around 97%and the lowest interfacial resistance.With increasing the concentration of CsNO3 as electrolyte additive,the electrochemical performance of cells becomes poor.Meanwhile,the morphology of lithium deposited films with CsNO3-modified electrolyte become smoother and more uniform compared with the basic electrolyte.展开更多
In order to reveal combustion characteristics of H_2/air mixture in a micro-combustor with and without bluff body, the effects of inlet velocities, equivalence ratios and bluff body's blockage ratios on the temper...In order to reveal combustion characteristics of H_2/air mixture in a micro-combustor with and without bluff body, the effects of inlet velocities, equivalence ratios and bluff body's blockage ratios on the temperature field, pressure of the combustor wall, combustion efficiency and blow-off limit were investigated. The numerical results indicate that the sudden expansion plate micro combustor with bluff body could enhance the turbulent disturbance of the mixed gas in the combustion chamber and the combustion condition is improved. Moreover, a low-speed and high temperature recirculation region was formed between the sudden expansion step and the bluff body so that the high and uniform wall temperature(>1000 K) could be gotten. As a result, it could strengthen the mixing process, prolong the residence time of gas, control the flame position effectively and widen the operation range by the synergistic effect of the bluff body and steps. When the blockage ratio ranged from 0.3 to 0.6, it could be found that the bluff body could play a stabilizing effect and expand combustion blow burning limit, and combustion efficiency firstly was increased with the inlet velocity and equivalence ratio, and then was decreased.展开更多
In this paper, firstly we study the series ma intenance system with two components, obtain its exsistence and uniqueness of a dynamic state nonnegative solution by strongly continuous semigroups of operator s theory. ...In this paper, firstly we study the series ma intenance system with two components, obtain its exsistence and uniqueness of a dynamic state nonnegative solution by strongly continuous semigroups of operator s theory. Then we prove that 0 is the eigenvalue of the system’s host operators, a nd finally we study the eigenvector of the eigenvalue 0.展开更多
Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently availa...Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently available TPV systems suffer from low conversion efficiency and low throughput. A viable solution to increase their efficiency is to apply micro/nanoscale radiation principles in the design of different components to utilize the characteristics ~f thermal radiation at small distances and in microstructures. Several critical issues are reviewed, such as photovoltaic effect, quantum efficiency and efficiency of TPV system. Emphasis is given to the development of wavelength-selective emitters and filters and the aspects of micro/nanoscale heat transfer. Recent progress, along with the challenges and opportunities for future development of TPV systems are also outlined.展开更多
Efficient spectrum resource allocation in wireless heterogeneous networks is important for improving the system throughput and guaranteeing the user's Quality-of-Service(QoS).In this paper,we propose an enhanced a...Efficient spectrum resource allocation in wireless heterogeneous networks is important for improving the system throughput and guaranteeing the user's Quality-of-Service(QoS).In this paper,we propose an enhanced algorithm for spectrum resource allocation in heterogeneous networks.First,the bandwidth of each user is determined by the user's rate demand and the channel state.Second,graph theory is enhanced and used to improve the spectrum efficiency.Third,spectrum resource is dynamically split between macrocell and femtocells with the changes of users' conditions.Our simulation results show that the proposed algorithm improves the system throughput significantly and also guarantees the fairness for the users.展开更多
The intensity of Magnetic field by 200, 300 and 400 gaos were selective to study their impacts on bacteria Bacillus, Pseudomonas and yeasts Candida dubliniensis, Candida glabrata, lssatchenkia orientalis and Rhodotoru...The intensity of Magnetic field by 200, 300 and 400 gaos were selective to study their impacts on bacteria Bacillus, Pseudomonas and yeasts Candida dubliniensis, Candida glabrata, lssatchenkia orientalis and Rhodotorula mucilaginosa growth and to reduce organic pollutants in wastewater by COD, TOC, TN and TP in concentrations of 180, 75, 52 and 84 ppm in pH 7.6 and treatment periods of 2, 4, 6 and 18 h in batch system. Results showed that magnetic field 300 gaos had higher ability to increase bacterial and yeasts growth by 400-600% in 18 h and reduced COD, TOC, TN and TP by 88, 85, 90 and 98.5% in same period treatment. While, the intensity of magnetic field 200 and 400 gaos have no effect on microorganisms growth and reducing organic pollutants. This study is first record for showing and explaining the positive effective of magnetic field on microorganisms growth.展开更多
A rhizobox system was used to determine the distribution of micronutrients (Fe, Mn, Cu and Zn) acrossthe rhmosphere of wheat (Triticum aestivum). The available contents of Fe and Mn in the rhizosphere wereraised by ad...A rhizobox system was used to determine the distribution of micronutrients (Fe, Mn, Cu and Zn) acrossthe rhmosphere of wheat (Triticum aestivum). The available contents of Fe and Mn in the rhizosphere wereraised by addition of manure or chemical fertilizer combined with manure, but those of Cu and Zn werehardly affected, which might be an important reason why manure addition could improve the Fe and Mnnutrition status of plants. Several possible mechanisms for the increase of the availabilities of Fe and Mn inthe rhizosphere due to manuring are discussed as well.展开更多
基金ACKNOWLEDGEMENT We gratefully acknowledge anonymous revie- wers who read drafts and made many helpful suggestions. This work was supported by the National Natural Science Foundation of China under Grant No. 61202079 the China Post- doctoral Science Foundation under Grant No. 2013M530526+2 种基金 the Foundation of Beijing En- gineering the Fundamental Research Funds for the Central Universities under Grant No. FRF-TP-13-015A and the Technology Centre for Convergence Networks and Ubiquitous Services.
文摘Internet of Things (IoT) refers to an infrastructure which enables the forms of com- munication and collaboration between people and things, and between things themselves. In order to improve its performance, we present a tradeoff between bandwidth and energy con- sumption in the loT in this paper. A service providing model is built to find the relation- ship between bandwidth and energy consump- tion using a cooperative differential game mo- del. The game solution is gotten in the condi- tion of grand coalition, feedback Nash equili- brium and intermediate coalitions and an allo- cation policy is obtain by Shapley theory. The results are shown as follows. Firstly, the per- formance of IoT decreases with the increasing of bandwidth cost or with the decreasing of en- ergy cost; secondly, all the nodes in the IoT com- posing a grand coalition can save bandwidth and energy consumption; thirdly, when the fac- tors of bandwidth cost and energy cost are eq- ual, the obtained number of provided services is an optimised value which is the trade-off between energy and bandwidth consumption.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (No. 39925007)the Biotechnology section of INCO-DC under the 4th Framework Program of the European Commission(No. ERBIC18CT960059).
文摘In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.
文摘Nanocrystalline cobalt coatings were produced from cobalt sulfate based electrolytes by using pulse current electrodeposition technique.The effects of bath composition and electrodeposition condition on current efficiency,morphology,structure and hardness of the coatings were investigated and the optimum deposition condition was determined.It was found that increment of cobalt sulfate concentration and sodium dodecyl sulfate(SDS)concentration in the bath had a negligible effect on microhardness of the coatings,while they were effective on electrodeposition current efficiency.Adding saccharin to electrodeposition bath decreased crystallite size of hexagonal close-packed(hcp)cobalt films and increased their microhardness without significant effect on current efficiency.Smoother and less defective coatings were also obtained from baths containing SDS and saccharin.The results revealed that both the current efficiency and microhardness were changed by variation of peak current density and duty cycle.Besides change of smooth morphology of the coatings to needle-shaped one,crystallite sizes and preferred orientation also varied with increasing the current density and duty cycle.
基金Supported by the National Natural Science Foundation of China (No. 20299030).
文摘Based on the transport phenomena theory, the passive mixing of water and ethanol in different threedimensional microchannels is simulated numerically. The average variance of water volume fraction is used to index the mixing efficiency in the cases with different Reynolds number and different fabricated mixers. The results show that the efficiency of liquid mixing is progressively dependent on the convective transport as the Reynolds number increases. The efficiency of serpentine microchannel decreases with the increasing Reynolds number in the laminar regime. Altering the aspect ratio of channel inlet section has no significant effect on the mixing efficiency. Increasing the area of channel inlet section will cause the decrease of the mixing efficiency. The mixing in serpentine channels is the most efficient among three different mixers because of the existence of second flow introduced by its special structure.
文摘Microbial Inoculants as Effective Microorganisms (EM) were applied to find out their effects on germination and seedling growth of Albizia saman in the nursery. The seedlings were grown in a mixture of sandy soils and cow dung (3:1) kept in polybags. The EM solution at different concentrations (0.1%, 0.5%, 1%, 2%, 5% and 10%) was incorporated before and after a week of sowing seeds. Germination and physical growth parameters, including shoot and root length, vigor index, collar diameter, leaf number, fresh and dry weight of shoot and root and total biomass increment over the control were measured. The nodulation status influenced by EM was also observed along with the estimation of chemical parameters like chlorophyll a, chlorophyll b and carotenoid. Both germination and the measured physical growth parameters were found significantly (P〈0.05) higher in seedlings treated with different concentrations of EM solution in comparison to the control. Maximum growth was found at 2% followed by 1% EM solution. Nodulation was higher at 0.1% concentration but it normally decreased with the increase of concentrations. Although there were a higher amount of pigments in leaves of the treated seedlings than of the control, the variations recorded with respect to chlorophyll a, b and carotenoid were not significantly higher in most of the treatments. Treated seedlings showed variable results along with the increment of EM applications and most of the parameters showed best results at the medium range of concentrations. The study indicates that the Microbial Inoculant (EM) technology might be useful to improve the growth of seedlings in the nursery. This also indicates that the associated beneficial organisms along with the polybag soils might be of value in improving the degraded soil or poor field soil for better nutrient and water uptake during the initial growth of transplanted seedlings.
基金The authors are grateful for the financial supports from the project of Ministry of Industry and Information Technology of China(No.2019-00899-1-1)the Natural Science Foundation of Shaanxi Province,China(No.2021JM-060)Fundamental Research Funds for the Central Universities,China(No.3102019QD0409).
文摘The electrochemical dissolution and passivation of laser additive manufactured Ti6Al4V were investigated through Tafel polarization,potentiostatic polarization and AC impedance measurements.The results show that the solution treatment−aging(STA)process aggravates the element micro-segregation compared to the annealing process,leading to varied Al and V contents of the phases from different samples.It is proven that either Al-rich or V-rich condition can highly affect the electrochemical dissolution behaviors due to thermodynamical instability caused by element segregation.The dissolution rate in the metastable passivation process is controlled by the stability of the produced film that is affected by phases distribution,especially the difficult-to-dissolve phase.And then,the dissolution rate of the phases in the transpassivation region is consistent with the rank in the activation process because the dense film is not capable of being produced.Compared to the annealed sample,the higher dissolution rate of the STA sample is beneficial to the electrochemical machining(ECM)of Ti6Al4V.
基金Supported by the National Natural Science Foundation of China(21206002,21121064,20990224)the State Key Laboratory of Chemical Engineering(SKL-Ch E-13A03)
文摘Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of inner diameter of 3 mm was studied by using a parallel competing iodide–iodate reaction as the working system.In this work,the effects of different operating conditions,such as impinging velocity and acid concentration,on segregation index were investigated.In addition,the effects of the inner nozzles diameter and the distance L between the jet axis and the top wall of the mixing chamber on the micromixing efficiency were also considered.It is concluded that the best range of L in this CIJR is 6.5–12.5 mm.Based on the incorporation model,the estimated minimum micromixing time tmof CIJR approximately equals to 2×10-4s.These experimental results indicate clearly that CIJR possesses a much better micromixing performance compared with the conventional stirred tank(micromixing time of 2×10-3to 2×10-2s).Hence,it can be envisioned that CIJR has more promising applications in various industrial processes.
文摘Silicon carbide ceramics were prepared with SiC powder treated by the fluidized bed opposed jet mill as raw materials, and the effects of the ultra-fine treatment mechanism on the compaction and sintering behavior of SiC ceramics were investigated. The results showed that the compacts had higher density and microstructure homogeneity when the sintering temperature of the compact was decreased; and that the surface microstructure, densification and mechanical properties of the sintered body could be ameliorated obviously.
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(2012CB619502)supported by the National Basic Research Program of China
文摘Lithium metal is one of the most promising anode materials for rechargeable battery with high energy density,but its practical use is still hindered by two main problems,namely,lithium dendrite growth and low Coulombic efficiency.To address the issues,cesium nitrate(CsNO3)is selected as the additive to modify the electrolyte for lithium secondary battery.Here we report electrochemical performance of lithium secondary battery with different concentration of CsNO3 as electrolyte additive.The study result demonstrates that Coulombic efficiency of Li–Cu cells and the lifetime of symmetric lithium cells contained CsNO3 additive are improved greatly.Li–Cu cell with 0.05 mol/L CsNO3 and 0.15 mol/L LiNO3 as electrolyte additive presents the best electrochemical performance,having the highest Coulombic efficiency of around 97%and the lowest interfacial resistance.With increasing the concentration of CsNO3 as electrolyte additive,the electrochemical performance of cells becomes poor.Meanwhile,the morphology of lithium deposited films with CsNO3-modified electrolyte become smoother and more uniform compared with the basic electrolyte.
基金Project(51176045)supported by the National Natural Science Foundation of ChinaProject(201208430262)supported by the National Studying Abroad Foundation of China
文摘In order to reveal combustion characteristics of H_2/air mixture in a micro-combustor with and without bluff body, the effects of inlet velocities, equivalence ratios and bluff body's blockage ratios on the temperature field, pressure of the combustor wall, combustion efficiency and blow-off limit were investigated. The numerical results indicate that the sudden expansion plate micro combustor with bluff body could enhance the turbulent disturbance of the mixed gas in the combustion chamber and the combustion condition is improved. Moreover, a low-speed and high temperature recirculation region was formed between the sudden expansion step and the bluff body so that the high and uniform wall temperature(>1000 K) could be gotten. As a result, it could strengthen the mixing process, prolong the residence time of gas, control the flame position effectively and widen the operation range by the synergistic effect of the bluff body and steps. When the blockage ratio ranged from 0.3 to 0.6, it could be found that the bluff body could play a stabilizing effect and expand combustion blow burning limit, and combustion efficiency firstly was increased with the inlet velocity and equivalence ratio, and then was decreased.
文摘In this paper, firstly we study the series ma intenance system with two components, obtain its exsistence and uniqueness of a dynamic state nonnegative solution by strongly continuous semigroups of operator s theory. Then we prove that 0 is the eigenvalue of the system’s host operators, a nd finally we study the eigenvector of the eigenvalue 0.
基金Project(2009AA05Z215) supported by the National High Technology Research and Development Program of China
文摘Thermophotovoltaic (TPV) system has been regarded as one promising means to alleviate current energy demand because it can directly generate electricity from radiation heat via photons. However, the presently available TPV systems suffer from low conversion efficiency and low throughput. A viable solution to increase their efficiency is to apply micro/nanoscale radiation principles in the design of different components to utilize the characteristics ~f thermal radiation at small distances and in microstructures. Several critical issues are reviewed, such as photovoltaic effect, quantum efficiency and efficiency of TPV system. Emphasis is given to the development of wavelength-selective emitters and filters and the aspects of micro/nanoscale heat transfer. Recent progress, along with the challenges and opportunities for future development of TPV systems are also outlined.
基金supported in part by National Natural Science Foundation(61231008)Natural Science Foundation of Shannxi Province(2015JQ6248)+1 种基金National S&T Major Project(2012ZX03003005-005)the 111 Project (B08038)
文摘Efficient spectrum resource allocation in wireless heterogeneous networks is important for improving the system throughput and guaranteeing the user's Quality-of-Service(QoS).In this paper,we propose an enhanced algorithm for spectrum resource allocation in heterogeneous networks.First,the bandwidth of each user is determined by the user's rate demand and the channel state.Second,graph theory is enhanced and used to improve the spectrum efficiency.Third,spectrum resource is dynamically split between macrocell and femtocells with the changes of users' conditions.Our simulation results show that the proposed algorithm improves the system throughput significantly and also guarantees the fairness for the users.
文摘The intensity of Magnetic field by 200, 300 and 400 gaos were selective to study their impacts on bacteria Bacillus, Pseudomonas and yeasts Candida dubliniensis, Candida glabrata, lssatchenkia orientalis and Rhodotorula mucilaginosa growth and to reduce organic pollutants in wastewater by COD, TOC, TN and TP in concentrations of 180, 75, 52 and 84 ppm in pH 7.6 and treatment periods of 2, 4, 6 and 18 h in batch system. Results showed that magnetic field 300 gaos had higher ability to increase bacterial and yeasts growth by 400-600% in 18 h and reduced COD, TOC, TN and TP by 88, 85, 90 and 98.5% in same period treatment. While, the intensity of magnetic field 200 and 400 gaos have no effect on microorganisms growth and reducing organic pollutants. This study is first record for showing and explaining the positive effective of magnetic field on microorganisms growth.
文摘A rhizobox system was used to determine the distribution of micronutrients (Fe, Mn, Cu and Zn) acrossthe rhmosphere of wheat (Triticum aestivum). The available contents of Fe and Mn in the rhizosphere wereraised by addition of manure or chemical fertilizer combined with manure, but those of Cu and Zn werehardly affected, which might be an important reason why manure addition could improve the Fe and Mnnutrition status of plants. Several possible mechanisms for the increase of the availabilities of Fe and Mn inthe rhizosphere due to manuring are discussed as well.