: The superfine CaCO3 powder coated with SiO2 was synthesized. Through XRD technique, the cell parameters and crystallite size of reference and coated CaCO3 were calculated. SiO2 present in the state of amorphous and...: The superfine CaCO3 powder coated with SiO2 was synthesized. Through XRD technique, the cell parameters and crystallite size of reference and coated CaCO3 were calculated. SiO2 present in the state of amorphous and prevent the agglomeration and growth of CaCO3 micro-crystal. By comparing the result of XPS analysis of reference compound to coated sample, CaCO3 has been coated successfully with SiO2. The thickness of the coating is about 2.4~ 3.4nm. From the difference(0.8eV increase) of the binding energy of Ca2p, we presume that the bind Si-O-Ca has formed in the surface of CaCO3.展开更多
Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through f...Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through four different routes and condition, i.e. conventional gravity casting with and without refiner, rheocasting and SIMA process. The optical microstructures of the alloy have been used to develop representative volume elements(RVEs). Two different boundary conditions have been employed to simulate the deformation behavior of the alloy under uniaxial loading. Finally, the simulated stress-strain behavior of the alloy is compared with the experimental result. It is found that the microstructural morphology has a significant impact on stress and strain distribution and load carrying capacity. The eutectic phase always carries a higher load than the α(Al) phase. The globular α(Al) grains with thinner and uniformly distributed eutectic network provide a better stress and strain distribution. Owing to this, SIMA processed alloy has better stress and strain distribution than other processes. Finally, the simulated yield strength of the alloy is verified by experiment and they have great agreement.展开更多
N-doped ZnO films were radio frequency(RF)sputtered on glass substrates and studied as a function of oxygen partial pressure(OPP)ranging from 3.0×10-4 to 9.5×10-3 Pa.X-ray diffraction patters confirmed the p...N-doped ZnO films were radio frequency(RF)sputtered on glass substrates and studied as a function of oxygen partial pressure(OPP)ranging from 3.0×10-4 to 9.5×10-3 Pa.X-ray diffraction patters confirmed the polycrystalline nature of the deposited films.The crystalline structure is influenced by the variation of OPP.Atomic force microscopy analysis confirmed the agglomeration of the neighboring spherical grains with a sharp increase of root mean square(RMS)roughness when the OPP is increased above 1.4×10-3 Pa.X-ray photoelectron spectroscopy analysis revealed that the incorporation of N content into the film is decreased with the increase of OPP,noticeably N 1s XPS peaks are hardly identified at 9.5×10-3 Pa.The average visible transmittance(380-700 nm) is increased with the increase of OPP(from~17%to 70%),and the optical absorption edge shifts towards the shorter wavelength.The films deposited with low OPP(≤3.0×10-4 Pa)show n-type conductivity and those deposited with high OPP(≥9.0×10-4 Pa)are highly resistive(>105Ω·cm)展开更多
AIM: To develop a method of labeling and microdissecting mouse Kupffer cells within an extraordinarily short period of time using laser capture microdissection (LCM). METHODS: Tissues are complex structures compri...AIM: To develop a method of labeling and microdissecting mouse Kupffer cells within an extraordinarily short period of time using laser capture microdissection (LCM). METHODS: Tissues are complex structures comprised of a heterogeneous population of interconnected cells. LCM offers a method of isolating a single cell type from specific regions of a tissue section. LCM is an essential approach used in conjunction with molecular analysis to study the functional interaction of cells in their native tissue environment. The process of labeling and acquiring cells by LCM prior to mRNA isolation can be elaborate, thereby subjecting the RNA to considerable degradation. Kupffer cell labeling is achieved by injecting India ink intravenously, thus circumventing the need for in vitro staining. The significance of this novel approach was validated using a cholestatic liver injury model. RESULTS: mRNA extracted from the microdissected cell population displayed marked increases in colonystimulating factor-1 receptor and Kupffer cell receptor message expression, which demonstrated Kupffer cell enrichment. Gene expression by Kupffer ceils derived from bile-duct-ligated, versus sham-operated, mice was compared. Microarray analysis revealed a significant (2.5-fold, q value 〈 10) change in 493 genes. Based on this fold-change and a standardized PubMed search, 10 genes were identified that were relevant to the ability of Kupffer cells to suppress liver injury. CONCLUSION; The methodology outlined herein provides an approach to isolating high quality RNA from Kupffer cells, without altering the tissue integrity.展开更多
We report the use of ultra-short, pulsed-laser annealed Ti/Au contacts to enhance the performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates without thermal damage. An analysis...We report the use of ultra-short, pulsed-laser annealed Ti/Au contacts to enhance the performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates without thermal damage. An analysis of the temperature distribution, based on finite difference methods, enabled understanding of the compatibility of our picosecond laser annealing for flexible poly(ethylene naphthalate) (PEN) substrates with low thermal budget (〈 200 ℃). The reduced contact resistance after laser annealing provided a significant improvement in transistor performance including higher peak field-effect mobility (from 24.84 to 44.84 cm2-V-l.s-1), increased output resistance (0.42 MΩ at Vgs- Vth = 20 V, a three-fold increase), a six-fold increase in the self-gain, and decreased sub- threshold swing. Transmission electron microscopy analysis and current-voltage measurements suggested that the reduced contact resistance resulted from the decrease of Schottky barrier width at the MoS2-metal junction. These results demonstrate that selective contact laser annealing is an attractive technology for fabricating low-resistivity metal-semiconductor junctions, providing important implications for the application of high-performance two-dimensional semicon- ductor FETs in flexible electronics.展开更多
Multiwalled-carbon nanotubes coated with nano-crystalline zinc oxide (ZnO) was prepared by in situ growth of nano zinc oxide on the surfaces of carbon nanotubes through hydrothermal method. X-ray diffraction, transm...Multiwalled-carbon nanotubes coated with nano-crystalline zinc oxide (ZnO) was prepared by in situ growth of nano zinc oxide on the surfaces of carbon nanotubes through hydrothermal method. X-ray diffraction, transmission electron microscopy and scanning electron microscopy analysis techniques were used to characterize the samples. It was observed that a layer of nano-crystalline ZnO with the wurtzite hexagonal crystal structure was uniformly coated on the nanotube surfaces with good adhesion, which resulted in the formation of a novel ZnO-nanotuhe nano composite. In this work, the carbon nanotubes decorated by metal oxide nanoparticles were synthesized by a simple chemical-solution route which is suitable for the large-scale production with low cost.展开更多
文摘: The superfine CaCO3 powder coated with SiO2 was synthesized. Through XRD technique, the cell parameters and crystallite size of reference and coated CaCO3 were calculated. SiO2 present in the state of amorphous and prevent the agglomeration and growth of CaCO3 micro-crystal. By comparing the result of XPS analysis of reference compound to coated sample, CaCO3 has been coated successfully with SiO2. The thickness of the coating is about 2.4~ 3.4nm. From the difference(0.8eV increase) of the binding energy of Ca2p, we presume that the bind Si-O-Ca has formed in the surface of CaCO3.
文摘Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through four different routes and condition, i.e. conventional gravity casting with and without refiner, rheocasting and SIMA process. The optical microstructures of the alloy have been used to develop representative volume elements(RVEs). Two different boundary conditions have been employed to simulate the deformation behavior of the alloy under uniaxial loading. Finally, the simulated stress-strain behavior of the alloy is compared with the experimental result. It is found that the microstructural morphology has a significant impact on stress and strain distribution and load carrying capacity. The eutectic phase always carries a higher load than the α(Al) phase. The globular α(Al) grains with thinner and uniformly distributed eutectic network provide a better stress and strain distribution. Owing to this, SIMA processed alloy has better stress and strain distribution than other processes. Finally, the simulated yield strength of the alloy is verified by experiment and they have great agreement.
基金the Portuguese Ministry of Science and Technology(FCT-MCTES)for offering post-doctoral fellowships through the grants SFRH/BPD/34542/2007 and SFRH/BPD/35055/2007,respectivelyfinanced by FCT-MCTES through CENIMAT-I3N
文摘N-doped ZnO films were radio frequency(RF)sputtered on glass substrates and studied as a function of oxygen partial pressure(OPP)ranging from 3.0×10-4 to 9.5×10-3 Pa.X-ray diffraction patters confirmed the polycrystalline nature of the deposited films.The crystalline structure is influenced by the variation of OPP.Atomic force microscopy analysis confirmed the agglomeration of the neighboring spherical grains with a sharp increase of root mean square(RMS)roughness when the OPP is increased above 1.4×10-3 Pa.X-ray photoelectron spectroscopy analysis revealed that the incorporation of N content into the film is decreased with the increase of OPP,noticeably N 1s XPS peaks are hardly identified at 9.5×10-3 Pa.The average visible transmittance(380-700 nm) is increased with the increase of OPP(from~17%to 70%),and the optical absorption edge shifts towards the shorter wavelength.The films deposited with low OPP(≤3.0×10-4 Pa)show n-type conductivity and those deposited with high OPP(≥9.0×10-4 Pa)are highly resistive(>105Ω·cm)
基金Supported by NIH Grant DK068097funds provided by Rhode Island Hospital+1 种基金the Deutsche Forschungsgemeinschaft grant (DFG) grant GE1193/1-1NIH COBRE Award (RR-P20 RR17695)
文摘AIM: To develop a method of labeling and microdissecting mouse Kupffer cells within an extraordinarily short period of time using laser capture microdissection (LCM). METHODS: Tissues are complex structures comprised of a heterogeneous population of interconnected cells. LCM offers a method of isolating a single cell type from specific regions of a tissue section. LCM is an essential approach used in conjunction with molecular analysis to study the functional interaction of cells in their native tissue environment. The process of labeling and acquiring cells by LCM prior to mRNA isolation can be elaborate, thereby subjecting the RNA to considerable degradation. Kupffer cell labeling is achieved by injecting India ink intravenously, thus circumventing the need for in vitro staining. The significance of this novel approach was validated using a cholestatic liver injury model. RESULTS: mRNA extracted from the microdissected cell population displayed marked increases in colonystimulating factor-1 receptor and Kupffer cell receptor message expression, which demonstrated Kupffer cell enrichment. Gene expression by Kupffer ceils derived from bile-duct-ligated, versus sham-operated, mice was compared. Microarray analysis revealed a significant (2.5-fold, q value 〈 10) change in 493 genes. Based on this fold-change and a standardized PubMed search, 10 genes were identified that were relevant to the ability of Kupffer cells to suppress liver injury. CONCLUSION; The methodology outlined herein provides an approach to isolating high quality RNA from Kupffer cells, without altering the tissue integrity.
文摘We report the use of ultra-short, pulsed-laser annealed Ti/Au contacts to enhance the performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates without thermal damage. An analysis of the temperature distribution, based on finite difference methods, enabled understanding of the compatibility of our picosecond laser annealing for flexible poly(ethylene naphthalate) (PEN) substrates with low thermal budget (〈 200 ℃). The reduced contact resistance after laser annealing provided a significant improvement in transistor performance including higher peak field-effect mobility (from 24.84 to 44.84 cm2-V-l.s-1), increased output resistance (0.42 MΩ at Vgs- Vth = 20 V, a three-fold increase), a six-fold increase in the self-gain, and decreased sub- threshold swing. Transmission electron microscopy analysis and current-voltage measurements suggested that the reduced contact resistance resulted from the decrease of Schottky barrier width at the MoS2-metal junction. These results demonstrate that selective contact laser annealing is an attractive technology for fabricating low-resistivity metal-semiconductor junctions, providing important implications for the application of high-performance two-dimensional semicon- ductor FETs in flexible electronics.
文摘Multiwalled-carbon nanotubes coated with nano-crystalline zinc oxide (ZnO) was prepared by in situ growth of nano zinc oxide on the surfaces of carbon nanotubes through hydrothermal method. X-ray diffraction, transmission electron microscopy and scanning electron microscopy analysis techniques were used to characterize the samples. It was observed that a layer of nano-crystalline ZnO with the wurtzite hexagonal crystal structure was uniformly coated on the nanotube surfaces with good adhesion, which resulted in the formation of a novel ZnO-nanotuhe nano composite. In this work, the carbon nanotubes decorated by metal oxide nanoparticles were synthesized by a simple chemical-solution route which is suitable for the large-scale production with low cost.