Copper alloys with high strength and high conductivity are an important functional material with full of potential applications. In the present investigation, a bronze with higher tin content (Cu-13.5 wt pct Sn) was...Copper alloys with high strength and high conductivity are an important functional material with full of potential applications. In the present investigation, a bronze with higher tin content (Cu-13.5 wt pct Sn) was prepared successfully by spray forming, the feasibility of cold roiling this alloy was investigated, and the cold roiling characteristics of this alloy have also been discussed. The results indicate that the spray-formed Cu-13.5 wt pct Sn alloy, compared with the as-cast ingot, shows a quite fine and homogeneous single-phase structure, and, therefore shows an excellent workability. It can be cold-roiled with nearly 15% reduction in the thickness per pass and the total reduction can reach 80%. The classical border between the wrought and cast alloys is shifted to considerably higher tin contents by spray forming. After proper thermo-mechanical treatment, spray-formed Cu-13.5 wt pct Sn alloy exhibits excellent comprehensive mechanical properties. Particularly, it shows a low elastic modulus (-88 GPa) and a high flow stress (over 800 MPa) after cold forming. This combination of properties is unique in the domain of metallic materials and could open new possibilities in spring technology field.展开更多
Fe-Cr-Mo-Ni-C-Co alloy was quenched in liquid nitrogen and held for 24 h.Hardness tester,OM,XRD,SEM were used to investigate the mechanical properties and microstructures of the alloy.The results show that the hardnes...Fe-Cr-Mo-Ni-C-Co alloy was quenched in liquid nitrogen and held for 24 h.Hardness tester,OM,XRD,SEM were used to investigate the mechanical properties and microstructures of the alloy.The results show that the hardness increases by 1-2(HRC)and the compressive strength decreases slightly after cryogenic treatment.The increase in hardness is attributed to the transformation from austenite to martensite and the precipitation of the very tiny carbideη-Fe2C.The decrease in compressive strength is caused by residual stress.The great amount of carbides,such as Cr7C3 and Fe2MoC,in the alloy and the obvious difference in thermal expansion coefficient between these carbides and the matrix at the cryogenic temperatures lead to this residual stress.The microscopy of cryogenic martensite is different from that of the non-cryogenic martensite.The cryogenic martensite is long and fine;while the non-cryogenic martensite is short and coarse.There is obvious surface relief of the cryogenic martensite transformation.It is not orientational of this kind surface relief and the boundary of this surface relief is smooth and in a shape of butterfly.The surface relief in the non-cryogenic martensite is wide and arranged in parallel,and the boundary of surface relief is not smooth.These characteristics may imply different growth ways of the two kinds of martensite.展开更多
gradient aluminum alloy was prepared by semi-continuous casting using double-stream-pouring technique. The microstructures of the as-cast, pressed and heat-treated alloys were analyzed by scanning electron microscope ...gradient aluminum alloy was prepared by semi-continuous casting using double-stream-pouring technique. The microstructures of the as-cast, pressed and heat-treated alloys were analyzed by scanning electron microscope and transmission electron microscope. And the mechanical properties of the alloy in pressed and heat-treated states were studied. The results show that the ingots with diameter of 65 mm and external thickness (about) 5.5 mm are obtained when the temperatures of the melt in the internal and external ladles are 1 023 and 1 003 K, respectively, and the nozzle diameter is 2.0 mm. The microstructures of the as-cast alloy consist of α(Al)+(θ(CuAl2))+S(Al2CuMg) in the internal region and (α(Al)+MnAl6) in the external region. The phases found in the internal and external layers coexist in the transition zone. The transition layer is maintained after plastic deformation and heat treatment of the alloy. The tensile strength, yield strength and elongation of the alloy are 300 MPa, 132 MPa and 16.0%, respectively, after T6 treatment. The tensile and yield strength are increased by 150.0% and (94.1%,) respectively, compared with that of 3003 aluminum alloy. The maximum hardness in the internal region of 2024/3003 gradient aluminum alloy can be increased from HRF 55 in the pressed state to HRF 70 in the heat-treated state.展开更多
The effects of low temperature thermo-mechanical treatment (LTTMT) on microstructures and mechanical properties of Ti-6Al-4V (TC4) alloy were studied by optical microscopy (OM), tensile test, scanning electron m...The effects of low temperature thermo-mechanical treatment (LTTMT) on microstructures and mechanical properties of Ti-6Al-4V (TC4) alloy were studied by optical microscopy (OM), tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results confirm that the strength of TC4 alloy can be improved obviously by LTTMT processing, which combines strain strengthening with aging strengthening. The effect of LTTMT on the alloy depends on the microstructure of the refined and dispersed a+fl phase on the basis of high dislocation density by pre-deformation below recrystallization temperature. The tensile strength decreases with the increase of pre-deformation reduction. The optimal processing parameters of LTTMT for TC4 alloy are as follows: solution treatment at 900 ℃ for 15 min, pre-deformation in the range of 600-700 ℃ with a reduction of 35%, finally aging at 540 ℃ for 4 h followed by air-cooling.展开更多
To reduce mechanical vibrations induced by big errors compensation, a new software compensation method based on an improved digital differential analyzer (DDA) interpolator for static and quasi-static errors of machin...To reduce mechanical vibrations induced by big errors compensation, a new software compensation method based on an improved digital differential analyzer (DDA) interpolator for static and quasi-static errors of machine tools is proposed. Based on principle of traditional DDA interpolator, a DDA interpolator is divided into command generator and command analyzer. There are three types of errors, considering the difference of positions between compensation points and interpolation segments. According to the classification, errors are distributed evenly in data processing and compensated to certain interpolation segments in machining. On-line implementation results show that the proposed approach greatly improves positioning accuracy of computer numerical control (CNC) machine tools.展开更多
In order to improve the control performance of industrial robotic arms,an efficient fractional-order iterative sliding mode control method is proposed by combining fractional calculus theory with iterative learning co...In order to improve the control performance of industrial robotic arms,an efficient fractional-order iterative sliding mode control method is proposed by combining fractional calculus theory with iterative learning control and sliding mode control.In the design process of the controller,fractional approaching law and fractional sliding mode control theories are used to introduce fractional calculus into iterative sliding mode control,and Lyapunov theory is used to analyze the system stability.Then taking a two-joint robotic arm as an example,the proposed control strategy is verified by MATLAB simulation.The simulation experiments show that the fractional-order iterative sliding mode control strategy can effectively improve the tracking speed and tracking accuracy of the joint,reduce the tracking error,have strong robustness and effectively suppress the chattering phenomenon of sliding mode control.展开更多
In an optomechanical resonator, the optical and mechanical excitations can be coherently converted, which induces a transparency window for a weak probe laser beam. Here, we report an experimental study of transient o...In an optomechanical resonator, the optical and mechanical excitations can be coherently converted, which induces a transparency window for a weak probe laser beam. Here, we report an experimental study of transient optomechanically induced transparency(OMIT) using the silica microsphere with the breathing modes. The transient OMIT behavior obtained are in good agreement with theoretical calculations. In addition, the coherent interconversion between optical and mechanical excitations that can be used for light storage and readout has also been studied here. Our experimental results indicate that the light storage is closely related to the process of OMIT, and the photon-phonon conversion can be further applied to optical wavelength or optical mode conversion.展开更多
In this paper, we demonstrate experimentally switching a cantilever between its optomechanical bistable states in a low finesse optical cavity. Our experiment shows that the deformation of cantilever can be manipulate...In this paper, we demonstrate experimentally switching a cantilever between its optomechanical bistable states in a low finesse optical cavity. Our experiment shows that the deformation of cantilever can be manipulated by tuning the cavity resonance. When the laser power increases across the threshold value of 110 ?W, optomechanical bistability is induced by strong static photothermal backaction at room temperature. Numerical calculation revealed that the bistable effect originates from the multi-well potential created via the optomechanical interaction. Switching of the cantilever between the bistable states was achieved by tuning the cavity to the corresponding boundaries of the bistable region, where the barrier between the bistable states vanishes.展开更多
As the first Creative Research Group sponsored by Division of Mechanics of Department of Mathematical and Physical Sciences of NSEC, a project team, including two CAS members (Porf. Kezhi Huang, Prof. Wei Yang) and ...As the first Creative Research Group sponsored by Division of Mechanics of Department of Mathematical and Physical Sciences of NSEC, a project team, including two CAS members (Porf. Kezhi Huang, Prof. Wei Yang) and two Changjiang scholars (Prof. Quanshui Zheng, Prof. Daining Pang) from Tsinghua University, focused their research on "Micro/nanoscale mechanics and smart materials", and progressed in the following:展开更多
Electro-deposition, electrical activation, thermal oxidation, and reactive ion sputtering are the four primary methods to fabricate iridium oxide film. Among these methods, reactive ion sputtering is a commonly used m...Electro-deposition, electrical activation, thermal oxidation, and reactive ion sputtering are the four primary methods to fabricate iridium oxide film. Among these methods, reactive ion sputtering is a commonly used method in standard micro-fabrication processes. In different sputtering conditions, the component, texture, and electrochemistry character of iridium oxide varies considerably. To fabricate the iridium oxide film compatible with the wafer-level processing of neural electrodes, the quality of iridium oxide film must be able to withstand the mechanical and chemical impact of post-processing, and simultaneously achieve good performance as a neural electrode. In this study, parameters of sputtering were researched and developed to achieve a balance between mechanical stability and good electrochemical characteristics of iridium oxide film on electrode. Iridium oxide fabricating process combined with fabrication flow of silicon electrodes, at wafer-level, is introduced to produce silicon based planar iridium oxide neural electrodes. Compared with bare gold electrodes, iridium oxide electrodes fabricated with this method exhibit particularly good electrochemical stability, low impedance of 386 kW at 1 kH z, high safe charge storage capacity of 3.2 m C/cm^2, and good impedance consistency of less than 25% fluctuation.展开更多
Amorphous SiBCNAl powders were prepared via a mechanical alloying (MA) technique using crystalline silicon (Si), hexagonal boron nitride (h-BN), graphite (C), and aluminum (Al) as starting materials. SiBCNAl powders w...Amorphous SiBCNAl powders were prepared via a mechanical alloying (MA) technique using crystalline silicon (Si), hexagonal boron nitride (h-BN), graphite (C), and aluminum (Al) as starting materials. SiBCNAl powders were consolidated by a hot pressing (HP) technique at 1800 °C under a pressure of 30 MPa in argon and nitrogen. The sintering atmosphere had a great influence on the microstructures and mechanical properties of the ceramics. The two ceramics had different phase compositions and fracture surface morphologies. For the ceramics sintered in argon, flexural strength, fracture toughness, elastic modulus and Vickers hardness were 421.90 MPa, 3.40 MPa·m1/2, 174.10 GPa, and 12.74 GPa, respectively. For the ceramics sintered in nitrogen, the mechanical properties increased, except for the Vickers hardness, and the values of the above properties were 526.80 MPa, 5.25 MPa·m1/2, 222.10 GPa, and 11.63 GPa, respectively.展开更多
An equiatomic CoCrFeNiMn high entropy alloy (HEA) was produced by powder metallurgy method. Cold rolling followed by subsequent annealing was conducted to further optimize the microstructure and mechanical propertie...An equiatomic CoCrFeNiMn high entropy alloy (HEA) was produced by powder metallurgy method. Cold rolling followed by subsequent annealing was conducted to further optimize the microstructure and mechanical properties. The results show that the SPSed CoCrFeNiMn HEA has an equiaxed single fcc phase microstructrue. Cold rolling results in extensive dislocation pile-up and twinning within the grains. The 80% cold-rolled alloy shows very high yield strength of 1292 MPa, but a limited elongation of 3%. Subsequent annealing produces recrystallization and precipitation of fine a particles with particle size of 30-100 nm. The annealed alloy has a yield strength of 540 MPa, which is about two to three times of the cast CoCrFeNiMn HEA, while still maintains a high tensile ductility of 41%. The improvement of the tensile properties is caused by the grain boundary strengthening, solid solution strengthening, and precipitation strengthening.展开更多
基金the Hundred-Talent-Person Project of Chinese Academy of Sciences.
文摘Copper alloys with high strength and high conductivity are an important functional material with full of potential applications. In the present investigation, a bronze with higher tin content (Cu-13.5 wt pct Sn) was prepared successfully by spray forming, the feasibility of cold roiling this alloy was investigated, and the cold roiling characteristics of this alloy have also been discussed. The results indicate that the spray-formed Cu-13.5 wt pct Sn alloy, compared with the as-cast ingot, shows a quite fine and homogeneous single-phase structure, and, therefore shows an excellent workability. It can be cold-roiled with nearly 15% reduction in the thickness per pass and the total reduction can reach 80%. The classical border between the wrought and cast alloys is shifted to considerably higher tin contents by spray forming. After proper thermo-mechanical treatment, spray-formed Cu-13.5 wt pct Sn alloy exhibits excellent comprehensive mechanical properties. Particularly, it shows a low elastic modulus (-88 GPa) and a high flow stress (over 800 MPa) after cold forming. This combination of properties is unique in the domain of metallic materials and could open new possibilities in spring technology field.
文摘Fe-Cr-Mo-Ni-C-Co alloy was quenched in liquid nitrogen and held for 24 h.Hardness tester,OM,XRD,SEM were used to investigate the mechanical properties and microstructures of the alloy.The results show that the hardness increases by 1-2(HRC)and the compressive strength decreases slightly after cryogenic treatment.The increase in hardness is attributed to the transformation from austenite to martensite and the precipitation of the very tiny carbideη-Fe2C.The decrease in compressive strength is caused by residual stress.The great amount of carbides,such as Cr7C3 and Fe2MoC,in the alloy and the obvious difference in thermal expansion coefficient between these carbides and the matrix at the cryogenic temperatures lead to this residual stress.The microscopy of cryogenic martensite is different from that of the non-cryogenic martensite.The cryogenic martensite is long and fine;while the non-cryogenic martensite is short and coarse.There is obvious surface relief of the cryogenic martensite transformation.It is not orientational of this kind surface relief and the boundary of this surface relief is smooth and in a shape of butterfly.The surface relief in the non-cryogenic martensite is wide and arranged in parallel,and the boundary of surface relief is not smooth.These characteristics may imply different growth ways of the two kinds of martensite.
文摘gradient aluminum alloy was prepared by semi-continuous casting using double-stream-pouring technique. The microstructures of the as-cast, pressed and heat-treated alloys were analyzed by scanning electron microscope and transmission electron microscope. And the mechanical properties of the alloy in pressed and heat-treated states were studied. The results show that the ingots with diameter of 65 mm and external thickness (about) 5.5 mm are obtained when the temperatures of the melt in the internal and external ladles are 1 023 and 1 003 K, respectively, and the nozzle diameter is 2.0 mm. The microstructures of the as-cast alloy consist of α(Al)+(θ(CuAl2))+S(Al2CuMg) in the internal region and (α(Al)+MnAl6) in the external region. The phases found in the internal and external layers coexist in the transition zone. The transition layer is maintained after plastic deformation and heat treatment of the alloy. The tensile strength, yield strength and elongation of the alloy are 300 MPa, 132 MPa and 16.0%, respectively, after T6 treatment. The tensile and yield strength are increased by 150.0% and (94.1%,) respectively, compared with that of 3003 aluminum alloy. The maximum hardness in the internal region of 2024/3003 gradient aluminum alloy can be increased from HRF 55 in the pressed state to HRF 70 in the heat-treated state.
基金Project(2008WK2005) supported by the Science and Technology Plan of Hunan Province, China
文摘The effects of low temperature thermo-mechanical treatment (LTTMT) on microstructures and mechanical properties of Ti-6Al-4V (TC4) alloy were studied by optical microscopy (OM), tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results confirm that the strength of TC4 alloy can be improved obviously by LTTMT processing, which combines strain strengthening with aging strengthening. The effect of LTTMT on the alloy depends on the microstructure of the refined and dispersed a+fl phase on the basis of high dislocation density by pre-deformation below recrystallization temperature. The tensile strength decreases with the increase of pre-deformation reduction. The optimal processing parameters of LTTMT for TC4 alloy are as follows: solution treatment at 900 ℃ for 15 min, pre-deformation in the range of 600-700 ℃ with a reduction of 35%, finally aging at 540 ℃ for 4 h followed by air-cooling.
基金the Special Project for Key Mechatronic Equipment of Zhejiang Province (No. 2006C11067)the Science&Technology Project of Zhejiang Province (No. 2005E10049), China
文摘To reduce mechanical vibrations induced by big errors compensation, a new software compensation method based on an improved digital differential analyzer (DDA) interpolator for static and quasi-static errors of machine tools is proposed. Based on principle of traditional DDA interpolator, a DDA interpolator is divided into command generator and command analyzer. There are three types of errors, considering the difference of positions between compensation points and interpolation segments. According to the classification, errors are distributed evenly in data processing and compensated to certain interpolation segments in machining. On-line implementation results show that the proposed approach greatly improves positioning accuracy of computer numerical control (CNC) machine tools.
基金National Natural Science Foundation of China(No.61663022)Department of Education Project of Gansu Province(No.18JR3RA105)。
文摘In order to improve the control performance of industrial robotic arms,an efficient fractional-order iterative sliding mode control method is proposed by combining fractional calculus theory with iterative learning control and sliding mode control.In the design process of the controller,fractional approaching law and fractional sliding mode control theories are used to introduce fractional calculus into iterative sliding mode control,and Lyapunov theory is used to analyze the system stability.Then taking a two-joint robotic arm as an example,the proposed control strategy is verified by MATLAB simulation.The simulation experiments show that the fractional-order iterative sliding mode control strategy can effectively improve the tracking speed and tracking accuracy of the joint,reduce the tracking error,have strong robustness and effectively suppress the chattering phenomenon of sliding mode control.
基金supported by the National Basic Research Program of China(Grant Nos.2011CB921200 and 2011CBA00200)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB01030000)+1 种基金the National Natural Science Foundation of China(Grant No.61308079)the Fundamental Research Funds for the Central Universities
文摘In an optomechanical resonator, the optical and mechanical excitations can be coherently converted, which induces a transparency window for a weak probe laser beam. Here, we report an experimental study of transient optomechanically induced transparency(OMIT) using the silica microsphere with the breathing modes. The transient OMIT behavior obtained are in good agreement with theoretical calculations. In addition, the coherent interconversion between optical and mechanical excitations that can be used for light storage and readout has also been studied here. Our experimental results indicate that the light storage is closely related to the process of OMIT, and the photon-phonon conversion can be further applied to optical wavelength or optical mode conversion.
基金supported by the National Basic Research Program of China(Grant No.2012CB922104)the National Natural Science Foundation of China(Grant Nos.11204357,11174027 and 11121403)
文摘In this paper, we demonstrate experimentally switching a cantilever between its optomechanical bistable states in a low finesse optical cavity. Our experiment shows that the deformation of cantilever can be manipulated by tuning the cavity resonance. When the laser power increases across the threshold value of 110 ?W, optomechanical bistability is induced by strong static photothermal backaction at room temperature. Numerical calculation revealed that the bistable effect originates from the multi-well potential created via the optomechanical interaction. Switching of the cantilever between the bistable states was achieved by tuning the cavity to the corresponding boundaries of the bistable region, where the barrier between the bistable states vanishes.
文摘As the first Creative Research Group sponsored by Division of Mechanics of Department of Mathematical and Physical Sciences of NSEC, a project team, including two CAS members (Porf. Kezhi Huang, Prof. Wei Yang) and two Changjiang scholars (Prof. Quanshui Zheng, Prof. Daining Pang) from Tsinghua University, focused their research on "Micro/nanoscale mechanics and smart materials", and progressed in the following:
基金supported by the National Natural Science Foundation of China(Grant Nos.61335010,61275145,61275200&61275145)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2013AA032204)+1 种基金the Brain Vanguard Technology Crossover Cooperation Projects of Chinese Academy of Sciences(GrantNo.KJZD-EW-L11-01)the Recruitment Program for Young Professionals
文摘Electro-deposition, electrical activation, thermal oxidation, and reactive ion sputtering are the four primary methods to fabricate iridium oxide film. Among these methods, reactive ion sputtering is a commonly used method in standard micro-fabrication processes. In different sputtering conditions, the component, texture, and electrochemistry character of iridium oxide varies considerably. To fabricate the iridium oxide film compatible with the wafer-level processing of neural electrodes, the quality of iridium oxide film must be able to withstand the mechanical and chemical impact of post-processing, and simultaneously achieve good performance as a neural electrode. In this study, parameters of sputtering were researched and developed to achieve a balance between mechanical stability and good electrochemical characteristics of iridium oxide film on electrode. Iridium oxide fabricating process combined with fabrication flow of silicon electrodes, at wafer-level, is introduced to produce silicon based planar iridium oxide neural electrodes. Compared with bare gold electrodes, iridium oxide electrodes fabricated with this method exhibit particularly good electrochemical stability, low impedance of 386 kW at 1 kH z, high safe charge storage capacity of 3.2 m C/cm^2, and good impedance consistency of less than 25% fluctuation.
基金Project supported by the National Natural Science Foundation of China (No 50902031)the Development Program for Outstanding Young Teachers in Harbin Institute of Technology (No HITQNJS2009064)
文摘Amorphous SiBCNAl powders were prepared via a mechanical alloying (MA) technique using crystalline silicon (Si), hexagonal boron nitride (h-BN), graphite (C), and aluminum (Al) as starting materials. SiBCNAl powders were consolidated by a hot pressing (HP) technique at 1800 °C under a pressure of 30 MPa in argon and nitrogen. The sintering atmosphere had a great influence on the microstructures and mechanical properties of the ceramics. The two ceramics had different phase compositions and fracture surface morphologies. For the ceramics sintered in argon, flexural strength, fracture toughness, elastic modulus and Vickers hardness were 421.90 MPa, 3.40 MPa·m1/2, 174.10 GPa, and 12.74 GPa, respectively. For the ceramics sintered in nitrogen, the mechanical properties increased, except for the Vickers hardness, and the values of the above properties were 526.80 MPa, 5.25 MPa·m1/2, 222.10 GPa, and 11.63 GPa, respectively.
基金supported by the National Key Research and Development Plan of China(Grant No.2016YFB0700302)the National Key Fundamental Research and Development Project of China(Grant No.2014CB644002)+3 种基金the National Natural Science Foundation of China(Grant No.51671217)the Science and Technology Planning Project of Hunan Province of China(Grant No.2015SK1002-1)the Innovation Driven Plan of Central South University(Grant No.2015CX004)the State Key Lab of Powder Metallurgy
文摘An equiatomic CoCrFeNiMn high entropy alloy (HEA) was produced by powder metallurgy method. Cold rolling followed by subsequent annealing was conducted to further optimize the microstructure and mechanical properties. The results show that the SPSed CoCrFeNiMn HEA has an equiaxed single fcc phase microstructrue. Cold rolling results in extensive dislocation pile-up and twinning within the grains. The 80% cold-rolled alloy shows very high yield strength of 1292 MPa, but a limited elongation of 3%. Subsequent annealing produces recrystallization and precipitation of fine a particles with particle size of 30-100 nm. The annealed alloy has a yield strength of 540 MPa, which is about two to three times of the cast CoCrFeNiMn HEA, while still maintains a high tensile ductility of 41%. The improvement of the tensile properties is caused by the grain boundary strengthening, solid solution strengthening, and precipitation strengthening.