Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether im...Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.展开更多
Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated....Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated. Results showed that thermomechanical treatments had a significant influence on the microstructure parameters and higher annealing and aging temperature and lower cooling rate led to the decrease of the volume fraction of primaryαand the size of prior-βand the increase of the width of grain boundary αand secondary α. The highest strength was obtained by solution treatment and aging due to a large amount of transformedβand finer grain boundaryαand secondaryαat the expense of slight decrease of elongation and the ultimate strength, yield strength, elongation, reduction of area were 1100 MPa, 1030 MPa, 13%and 53%separately. A good combination of strength and ductility has been obtained by duplex annealing with the above values 940 MPa, 887.5 MPa, 15%and 51%respectively. Analysis between microstructure parameters and tensile properties showed that with the volume fraction of transformedβphase and the prior-βgrain size increasing, the ultimate strength, yield strength and reduction of area increased, but the elongation decreased. While the width of grain boundary α and secondary α showed a contrary effect on the tensile properties. Elimination of grain boundaryαas well as small prior-βgrain size can also improve ductility.展开更多
Micro-properties of the oxide scale and near-surface zone of a type 316 steel annealed in air and vacuum have been systematically investigated. Microstructures of the specimens have been examined using optical microsc...Micro-properties of the oxide scale and near-surface zone of a type 316 steel annealed in air and vacuum have been systematically investigated. Microstructures of the specimens have been examined using optical microscopy and scanning and transmission electron microscopy (TEM). Chemical compositions for the oxide scale and near surface zone were also analysed. The results obtained show that the oxide scale developed in vacuum exhibits a distinct structure from that developed in air. Comparing to the vacuum-developed scale, the air-developed scale possesses a more complicated structure and relatively poor adhesion to the matrix. TEM observations reveal a difference in the dislocation density in the vicinity of the free surface, near-surface zone and the core of the specimens examined.展开更多
The effects of heat treatment on the microstructure and mechanical properties of two alloys, namely Al-12.2%Zn-2.48%Cu-2.0%Mg-0.15%Zr-0.166%Ag(alloy 1), and Al-9.99%Zn-1.72%Cu-2.5%Mg- 0.13%Zr (alloy 2) were invest...The effects of heat treatment on the microstructure and mechanical properties of two alloys, namely Al-12.2%Zn-2.48%Cu-2.0%Mg-0.15%Zr-0.166%Ag(alloy 1), and Al-9.99%Zn-1.72%Cu-2.5%Mg- 0.13%Zr (alloy 2) were investigated. The results show that low temperature aging after promotive solution treatment can increase elongation without the loss of strength for the studied alloys. The optimum aging treatment (T6) for alloy 1 and alloy 2 is 100℃/80h and 100℃/48h, respectively. Compared with other heat treatment alloys, alloy 1 and alloy 2 show super-high tensile strength up to 753MPa and 788MPa, remaining 9.3% and 9.7% elongation under T6 condition, respectively. During aging, trace addition of Ag enhances the formations of GP zone and metastable phase, and stabilizes GP zone and metastable phase to a higher temperature. Trace addition of Ag prolongs the aging time of reaching the peak strength and delays over-aging condition of the alloy. However, trace addition of Ag promotes the formation of coarse constituent in the alloy and consumes hardening alloying elements of Zn and Mg. Moreover, the addition of the transition element Zr in 7000 series super-high alloy forms incoherent Al3Zr dispersoid which can serve as nucleation sites for nonuniform precipitation of η phase during aging process. The higher the aging temperature, the greater the tendency for nonuniform precipitation of η phase.展开更多
Microstructures and mechanical properties of (Mg-2.0%Ce-0.7%Zn-0.7%Zr) alloy were studied. The results of scanning electron microscopy show that Mg12Ce phase mainly distributes at the grain boundaries. The fine (Mg1...Microstructures and mechanical properties of (Mg-2.0%Ce-0.7%Zn-0.7%Zr) alloy were studied. The results of scanning electron microscopy show that Mg12Ce phase mainly distributes at the grain boundaries. The fine (Mg12Ce) phase can apparently elevate recrystallization temperature by preventing the grain boundary migration. No dynamic recrystallization occurs during the hot-extrusion. The mechanical properties of as extruded specimens are (σb=278.5 MPa,) δ=12.0%, while those of the specimens annealed at 250 ℃ for 100 h are σb=(272.6 MPa,) δ=(11.3%,) which indicate that the alloy has good mechanical properties at room temperature.展开更多
gradient aluminum alloy was prepared by semi-continuous casting using double-stream-pouring technique. The microstructures of the as-cast, pressed and heat-treated alloys were analyzed by scanning electron microscope ...gradient aluminum alloy was prepared by semi-continuous casting using double-stream-pouring technique. The microstructures of the as-cast, pressed and heat-treated alloys were analyzed by scanning electron microscope and transmission electron microscope. And the mechanical properties of the alloy in pressed and heat-treated states were studied. The results show that the ingots with diameter of 65 mm and external thickness (about) 5.5 mm are obtained when the temperatures of the melt in the internal and external ladles are 1 023 and 1 003 K, respectively, and the nozzle diameter is 2.0 mm. The microstructures of the as-cast alloy consist of α(Al)+(θ(CuAl2))+S(Al2CuMg) in the internal region and (α(Al)+MnAl6) in the external region. The phases found in the internal and external layers coexist in the transition zone. The transition layer is maintained after plastic deformation and heat treatment of the alloy. The tensile strength, yield strength and elongation of the alloy are 300 MPa, 132 MPa and 16.0%, respectively, after T6 treatment. The tensile and yield strength are increased by 150.0% and (94.1%,) respectively, compared with that of 3003 aluminum alloy. The maximum hardness in the internal region of 2024/3003 gradient aluminum alloy can be increased from HRF 55 in the pressed state to HRF 70 in the heat-treated state.展开更多
The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sinte...The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sintered in vacuum, the carbon content of the specimen sintered in N_2 and Ar is lower by 0.5%; and the nitrogen content is higher by 0.3% when sintered in nitrogen. The central part of the ring structure may be carbide with either a high W or Ti content. The ring structures are (Ti, W, Ta, Mo, Co, Ni)C solid solutions with different metallic elements and distributions. The composition of the binder phase is (Co, Ni) solid solution with different Ti, W, Ta, Mo, C contents. The structures are uniform for the cermets sintered in vacuum and the properties are the best. When sintered in Ar or N2, the O_2 and N2 in the atmosphere take part in the sintering reaction to break the carbon balance in the cermets to form a shell structure and defects, which results in poor density, microhardness (HV) and transverse rupture strength (TRS).展开更多
Studies on the mechanical properties and microstructures of as-cast and extruded Mg-Ce-Zn-Zr and Mg-Nd-Zn-Zr alloys have been made before and after heat treatment. The results show that the mechanical properties of as...Studies on the mechanical properties and microstructures of as-cast and extruded Mg-Ce-Zn-Zr and Mg-Nd-Zn-Zr alloys have been made before and after heat treatment. The results show that the mechanical properties of as-cast Mg-Ce and Mg-Nd alloys are as good as those of typical die cast AZ91 alloy and the heat resistant WE43 alloy. In Nd-containing alloys, the precipitated phase Mg_ 12Nd contributes significantly to age hardening. The mechanical properties of extruded alloys are improved obviously compared with those of as-cast alloys. The ultimate strength is 257.8MPa for extruded Mg-Ce alloy and 265.6MPa for extruded Mg-Nd alloy. Extrusion is a useful method to improve both the strengths and elongations of the two experimental alloys at both ambient and elevated temperatures. The grain refinement and precipitation strengthening are the main strengthening mechanisms in the alloys. Tensile fracture surfaces show a dimple pattern after extruding and therefore reflect an improved elongation.展开更多
Mechanical properties and microstructures of Al-Li-Cu-Mg-Ag alloy after solution treatments were investigated by means of optical microscopy (OM), tensile test, hardness measurement and electrical conductivity test,...Mechanical properties and microstructures of Al-Li-Cu-Mg-Ag alloy after solution treatments were investigated by means of optical microscopy (OM), tensile test, hardness measurement and electrical conductivity test, differential scanning calorimetric (DSC), energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and transition electron microscopy (TEM), respectively The results show that both tensile strength and hardness increase first and then decrease with temperature at constant holding time of 30 min with maximum strength and hardness appearing at 520 ℃. Tensile strength, hardness and elongation of samples treated at 520 ℃ for 30 min are 566 MPa (σb), 512 MPa (σ0.2), HB 148 and 8.23% (δ), respectively. There are certain amount of fine T1 (AI2CuLi) phase dispersing among AI substrates according to TEM images. This may result in mixed fracture morphology with trans-granular and inter-granular delamination cracks observed in SEM images.展开更多
ZK60-xcerium alloys were studied,where x mass fraction is 0, 0.52%, 0.94%, 1.51% and 1.98%, respectively. Influence of Ce contents and heat-treatment on microstructure and tensile properties was analyzed. The results ...ZK60-xcerium alloys were studied,where x mass fraction is 0, 0.52%, 0.94%, 1.51% and 1.98%, respectively. Influence of Ce contents and heat-treatment on microstructure and tensile properties was analyzed. The results show that cast ZK60 alloy containing no Ce has coarse crystal grains, and lots of segregation aggregates around the grain-boundary. However, the alloys containing Ce have refined grains, and grain-boundaries are purified at the same time. Obvious dynamic recrystallization occurs in tested alloys after hot-extrusion. Tensile strength heightens with the increase of Ce content, and grows higher after aging at 150℃ for 024 h (T5 treatment). Comparing tensile properties of investigated alloys in different states, it can be concluded that synthetical properties of the alloy with 1.51% Ce addition is the best of all. In extruded state, σb and δ of this alloy are 318.6 MPa and 14.4%, respectively. After aging for 24 h ,σb is 338.6 MPa and δ is 15.6%.展开更多
SiO2-Al2O3-ZrO2 glasses with different nucleating agents were crystallized under special processing schedule. The microstructure and mechanical properties of the glass-ceramics in SiO2-Al2O3-ZrO2 system were investiga...SiO2-Al2O3-ZrO2 glasses with different nucleating agents were crystallized under special processing schedule. The microstructure and mechanical properties of the glass-ceramics in SiO2-Al2O3-ZrO2 system were investigated by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction and three-point bending method. The results show that ZrO2 is not an effective nucleating agent in SiO2-Al2O3-ZrO2 system, while TiO2 is effective for the separation of spinel, and P2O5 facilitates solubility of ZrO2 in glass and crystallization. The main crystalline phases of the glass-ceramics are spinel, anorthite and tetragonal zirconia. With the increase of ZrO2 content in the glass, glass-ceramics show higher bending strength (120MPa) than others.展开更多
The effects of Ag on the microstructure and mechanical properties of 2519 aluminum alloy were investigated by means of tensile test, micro-hardness test, transmission electron microscope and scanning electron microsco...The effects of Ag on the microstructure and mechanical properties of 2519 aluminum alloy were investigated by means of tensile test, micro-hardness test, transmission electron microscope and scanning electron microscope. The results show that the addition of 0.3% (mass fraction) Ag accelerates 2519 aluminum alloy’s age-hardening, increases its peak hardness and reduces 4h of peak aged time at 180℃. The addition of 0.3%(mass fraction) Ag increses the tensile strength at room temperature and elevated temperature. This increment at room temperature and 200℃ is 24MPa and 78MPa, respectively. In contrast, the elongation of 2519 aluminum alloy is decreased with Ag addition. The increase of tensile strength of 2519 aluminum alloy with Ag addition is attributed to the high volume fraction of Ω phase.展开更多
Mechanical properties of micro-structured porous silicon film (PS) were studied combining X-ray diffraction with micro-Raman spectroscopy. The micro-structured porous silicon samples with different porosities rangin...Mechanical properties of micro-structured porous silicon film (PS) were studied combining X-ray diffraction with micro-Raman spectroscopy. The micro-structured porous silicon samples with different porosities ranging from 30.7700 to 96.2500 were obtained by chemical etching. Lattice parameters of the samples were measured using X-ray diffraction and its maximal change is up to (1.000.) This lattice mismatch with the bulk silicon substrate may introduce residual stress to the porous film. The residual stress measurement by micro-Raman spectroscopy reveals that the maximum of tensile residual stress has reached GPa level in the porous film. Moreover, the lattice mismatch and its corresponding residual stress are increasing with the porosity of PS, but average (elastic) modulus is about 14.5 GPa, one order of magnitude lower than that of substrate Si. The mechanical properties of PS have a close relation with its micro-pore structure.展开更多
The 1050 aluminum alloy strip was prepared by means of electromagnetic and ultrasonic cast rolling on the modified asymmetric twin roll caster, and then the aluminum substrate for presensitized plate was prepared thro...The 1050 aluminum alloy strip was prepared by means of electromagnetic and ultrasonic cast rolling on the modified asymmetric twin roll caster, and then the aluminum substrate for presensitized plate was prepared through cold rolling and annealing.The effects of electromagnetic and ultrasonic cast rolling on microstructure, mechanical properties, surface roughness and electrolytic corrosion properties of 1050 aluminum substrate were studied. The results show that electromagnetic and ultrasonic cast rolling can decrease the average crystallite size of aluminum substrate by 5 μm, increase the crystal boundaries with uniform distribution, and make the second-phase particles with smaller size distributed dispersively in the substrate, meanwhile, it can increase the tensile strength, elongation and micro-hardness by 4.58%, 9.85% and HV 2, respectively, reduce the surface roughness, make the surface appearance more even, electrolytic corrosion polarization curve of aluminum substrate more smooth and the surface corrosion pits with regular shape more dispersive.展开更多
The effects of Yb content on the microstructures and mechanical properties of 2519A aluminum alloy plate were investigated by means of tensile test,optical microscopy,transmission electron microscopy,scanning electron...The effects of Yb content on the microstructures and mechanical properties of 2519A aluminum alloy plate were investigated by means of tensile test,optical microscopy,transmission electron microscopy,scanning electron microscopy and X-ray diffractometer.The results show that addition of 0.17% (mass fraction) Yb increases the density of θ' particles of the 2519A alloy plate and reduces the coarsening speed rate of θ' phase at 300 ℃.Therefore,tensile strength is enhanced from 483.2 MPa to 501.0 MPa at room temperature and is improved from 139.5 MPa to 169.4 MPa at 300 ℃.The results also show that with the addition of 0.30% (mass fraction) Yb,the mechanical properties increase at 300 ℃ and decrease at room temperature.With Yb additions,the Al7.4Cu9.6Yb2 phase is found whilst the segregated phases of as-cast alloys along grain boundaries become discontinuous,thin and spheroidized.展开更多
Studies on the sintering, microstructure, mechanical properties and low temperature degradation behavior of yttria stabilized-tetragonal zirconia polycrystal (3Y-TZP) were carried out. The results show that the addi...Studies on the sintering, microstructure, mechanical properties and low temperature degradation behavior of yttria stabilized-tetragonal zirconia polycrystal (3Y-TZP) were carried out. The results show that the addition of Al2O3 and MgO improve the sintering at low temperatures, and cause exaggerated grain growth and the transformation of tetragonaI-ZrO2 to monoclinic-ZrO2 with corresponding changes in the mechanical properties. The addition of the yttria-free monoclinic zirconia particles change the overall yttria distribution and induce an active transformation toughening mechanism. Furthermore, the dispersed yttria-free ZrO2 can inhibit the tetragonal zirconia transformation, which is beneficial to the improvement of the low temperature degradation behavior of 3Y- TZP ceramics.展开更多
The effects of Mg addition on mechanical thermo-electrical properties of Al.Mg/5%Al2O3 nanocomposite with differentMg contents (0, 5%, 10% and 20%) produced by mechanical alloying were studied. Scanning electron mic...The effects of Mg addition on mechanical thermo-electrical properties of Al.Mg/5%Al2O3 nanocomposite with differentMg contents (0, 5%, 10% and 20%) produced by mechanical alloying were studied. Scanning electron microscopy analysis (SEM),X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM) were used to characterize the produced powder. Theresults show that addition of Mg forms a predominant phase (Al.Mg solid solution). By increasing the mass fraction of Mg, thecrystallite size decreases and the lattice strain increases which results from the atomic penetration of Mg atoms into the substitutionalsites of Al lattice. The microhardness of the composite increases with the increase of the Mg content. The thermal and electricalconductivities increase linearly with the temperature increase in the inspected temperature range. Moreover, the thermalconductivity increases with the increase of Mg content.展开更多
This paper presents the effect of Fe on the microstructure and mechanical properties of Al-9Mg-2.6Si alloy.The Feaddition in the Al-9Mg-2.6Si alloy can slightly increase the yield strength but decrease the elongation....This paper presents the effect of Fe on the microstructure and mechanical properties of Al-9Mg-2.6Si alloy.The Feaddition in the Al-9Mg-2.6Si alloy can slightly increase the yield strength but decrease the elongation.With a much higher Feaddition around1.6wt.%,the elongation of the alloy can still maintain a usable level of5%.This alloy has shown a high toleranceon the Fe contamination展开更多
文摘Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.
基金Project(51101119)supported by the National Natural Science Foundation of China
文摘Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated. Results showed that thermomechanical treatments had a significant influence on the microstructure parameters and higher annealing and aging temperature and lower cooling rate led to the decrease of the volume fraction of primaryαand the size of prior-βand the increase of the width of grain boundary αand secondary α. The highest strength was obtained by solution treatment and aging due to a large amount of transformedβand finer grain boundaryαand secondaryαat the expense of slight decrease of elongation and the ultimate strength, yield strength, elongation, reduction of area were 1100 MPa, 1030 MPa, 13%and 53%separately. A good combination of strength and ductility has been obtained by duplex annealing with the above values 940 MPa, 887.5 MPa, 15%and 51%respectively. Analysis between microstructure parameters and tensile properties showed that with the volume fraction of transformedβphase and the prior-βgrain size increasing, the ultimate strength, yield strength and reduction of area increased, but the elongation decreased. While the width of grain boundary α and secondary α showed a contrary effect on the tensile properties. Elimination of grain boundaryαas well as small prior-βgrain size can also improve ductility.
文摘Micro-properties of the oxide scale and near-surface zone of a type 316 steel annealed in air and vacuum have been systematically investigated. Microstructures of the specimens have been examined using optical microscopy and scanning and transmission electron microscopy (TEM). Chemical compositions for the oxide scale and near surface zone were also analysed. The results obtained show that the oxide scale developed in vacuum exhibits a distinct structure from that developed in air. Comparing to the vacuum-developed scale, the air-developed scale possesses a more complicated structure and relatively poor adhesion to the matrix. TEM observations reveal a difference in the dislocation density in the vicinity of the free surface, near-surface zone and the core of the specimens examined.
基金Project (2001AA332030) supported by the National High Technology Research and Development Programof China
文摘The effects of heat treatment on the microstructure and mechanical properties of two alloys, namely Al-12.2%Zn-2.48%Cu-2.0%Mg-0.15%Zr-0.166%Ag(alloy 1), and Al-9.99%Zn-1.72%Cu-2.5%Mg- 0.13%Zr (alloy 2) were investigated. The results show that low temperature aging after promotive solution treatment can increase elongation without the loss of strength for the studied alloys. The optimum aging treatment (T6) for alloy 1 and alloy 2 is 100℃/80h and 100℃/48h, respectively. Compared with other heat treatment alloys, alloy 1 and alloy 2 show super-high tensile strength up to 753MPa and 788MPa, remaining 9.3% and 9.7% elongation under T6 condition, respectively. During aging, trace addition of Ag enhances the formations of GP zone and metastable phase, and stabilizes GP zone and metastable phase to a higher temperature. Trace addition of Ag prolongs the aging time of reaching the peak strength and delays over-aging condition of the alloy. However, trace addition of Ag promotes the formation of coarse constituent in the alloy and consumes hardening alloying elements of Zn and Mg. Moreover, the addition of the transition element Zr in 7000 series super-high alloy forms incoherent Al3Zr dispersoid which can serve as nucleation sites for nonuniform precipitation of η phase during aging process. The higher the aging temperature, the greater the tendency for nonuniform precipitation of η phase.
文摘Microstructures and mechanical properties of (Mg-2.0%Ce-0.7%Zn-0.7%Zr) alloy were studied. The results of scanning electron microscopy show that Mg12Ce phase mainly distributes at the grain boundaries. The fine (Mg12Ce) phase can apparently elevate recrystallization temperature by preventing the grain boundary migration. No dynamic recrystallization occurs during the hot-extrusion. The mechanical properties of as extruded specimens are (σb=278.5 MPa,) δ=12.0%, while those of the specimens annealed at 250 ℃ for 100 h are σb=(272.6 MPa,) δ=(11.3%,) which indicate that the alloy has good mechanical properties at room temperature.
文摘gradient aluminum alloy was prepared by semi-continuous casting using double-stream-pouring technique. The microstructures of the as-cast, pressed and heat-treated alloys were analyzed by scanning electron microscope and transmission electron microscope. And the mechanical properties of the alloy in pressed and heat-treated states were studied. The results show that the ingots with diameter of 65 mm and external thickness (about) 5.5 mm are obtained when the temperatures of the melt in the internal and external ladles are 1 023 and 1 003 K, respectively, and the nozzle diameter is 2.0 mm. The microstructures of the as-cast alloy consist of α(Al)+(θ(CuAl2))+S(Al2CuMg) in the internal region and (α(Al)+MnAl6) in the external region. The phases found in the internal and external layers coexist in the transition zone. The transition layer is maintained after plastic deformation and heat treatment of the alloy. The tensile strength, yield strength and elongation of the alloy are 300 MPa, 132 MPa and 16.0%, respectively, after T6 treatment. The tensile and yield strength are increased by 150.0% and (94.1%,) respectively, compared with that of 3003 aluminum alloy. The maximum hardness in the internal region of 2024/3003 gradient aluminum alloy can be increased from HRF 55 in the pressed state to HRF 70 in the heat-treated state.
基金Foundation item: Project(2002AA331090) supported by the Hi-tech Research and Development Program of China Project(06D073) supported by Scientific Research Fund of Education Department of Hunan Province
文摘The effect of the sintering atmospheres (vacuum, N_2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sintered in vacuum, the carbon content of the specimen sintered in N_2 and Ar is lower by 0.5%; and the nitrogen content is higher by 0.3% when sintered in nitrogen. The central part of the ring structure may be carbide with either a high W or Ti content. The ring structures are (Ti, W, Ta, Mo, Co, Ni)C solid solutions with different metallic elements and distributions. The composition of the binder phase is (Co, Ni) solid solution with different Ti, W, Ta, Mo, C contents. The structures are uniform for the cermets sintered in vacuum and the properties are the best. When sintered in Ar or N2, the O_2 and N2 in the atmosphere take part in the sintering reaction to break the carbon balance in the cermets to form a shell structure and defects, which results in poor density, microhardness (HV) and transverse rupture strength (TRS).
文摘Studies on the mechanical properties and microstructures of as-cast and extruded Mg-Ce-Zn-Zr and Mg-Nd-Zn-Zr alloys have been made before and after heat treatment. The results show that the mechanical properties of as-cast Mg-Ce and Mg-Nd alloys are as good as those of typical die cast AZ91 alloy and the heat resistant WE43 alloy. In Nd-containing alloys, the precipitated phase Mg_ 12Nd contributes significantly to age hardening. The mechanical properties of extruded alloys are improved obviously compared with those of as-cast alloys. The ultimate strength is 257.8MPa for extruded Mg-Ce alloy and 265.6MPa for extruded Mg-Nd alloy. Extrusion is a useful method to improve both the strengths and elongations of the two experimental alloys at both ambient and elevated temperatures. The grain refinement and precipitation strengthening are the main strengthening mechanisms in the alloys. Tensile fracture surfaces show a dimple pattern after extruding and therefore reflect an improved elongation.
基金Foundation item: Project(6140506) supported by GAD (General Armament Department), China
文摘Mechanical properties and microstructures of Al-Li-Cu-Mg-Ag alloy after solution treatments were investigated by means of optical microscopy (OM), tensile test, hardness measurement and electrical conductivity test, differential scanning calorimetric (DSC), energy dispersive X-ray (EDX), scanning electron microscopy (SEM) and transition electron microscopy (TEM), respectively The results show that both tensile strength and hardness increase first and then decrease with temperature at constant holding time of 30 min with maximum strength and hardness appearing at 520 ℃. Tensile strength, hardness and elongation of samples treated at 520 ℃ for 30 min are 566 MPa (σb), 512 MPa (σ0.2), HB 148 and 8.23% (δ), respectively. There are certain amount of fine T1 (AI2CuLi) phase dispersing among AI substrates according to TEM images. This may result in mixed fracture morphology with trans-granular and inter-granular delamination cracks observed in SEM images.
文摘ZK60-xcerium alloys were studied,where x mass fraction is 0, 0.52%, 0.94%, 1.51% and 1.98%, respectively. Influence of Ce contents and heat-treatment on microstructure and tensile properties was analyzed. The results show that cast ZK60 alloy containing no Ce has coarse crystal grains, and lots of segregation aggregates around the grain-boundary. However, the alloys containing Ce have refined grains, and grain-boundaries are purified at the same time. Obvious dynamic recrystallization occurs in tested alloys after hot-extrusion. Tensile strength heightens with the increase of Ce content, and grows higher after aging at 150℃ for 024 h (T5 treatment). Comparing tensile properties of investigated alloys in different states, it can be concluded that synthetical properties of the alloy with 1.51% Ce addition is the best of all. In extruded state, σb and δ of this alloy are 318.6 MPa and 14.4%, respectively. After aging for 24 h ,σb is 338.6 MPa and δ is 15.6%.
文摘SiO2-Al2O3-ZrO2 glasses with different nucleating agents were crystallized under special processing schedule. The microstructure and mechanical properties of the glass-ceramics in SiO2-Al2O3-ZrO2 system were investigated by differential scanning calorimetry, scanning electron microscopy, X-ray diffraction and three-point bending method. The results show that ZrO2 is not an effective nucleating agent in SiO2-Al2O3-ZrO2 system, while TiO2 is effective for the separation of spinel, and P2O5 facilitates solubility of ZrO2 in glass and crystallization. The main crystalline phases of the glass-ceramics are spinel, anorthite and tetragonal zirconia. With the increase of ZrO2 content in the glass, glass-ceramics show higher bending strength (120MPa) than others.
基金Project(2005CB623706)supported by the State Key Fundamental Research and Development Programof China
文摘The effects of Ag on the microstructure and mechanical properties of 2519 aluminum alloy were investigated by means of tensile test, micro-hardness test, transmission electron microscope and scanning electron microscope. The results show that the addition of 0.3% (mass fraction) Ag accelerates 2519 aluminum alloy’s age-hardening, increases its peak hardness and reduces 4h of peak aged time at 180℃. The addition of 0.3%(mass fraction) Ag increses the tensile strength at room temperature and elevated temperature. This increment at room temperature and 200℃ is 24MPa and 78MPa, respectively. In contrast, the elongation of 2519 aluminum alloy is decreased with Ag addition. The increase of tensile strength of 2519 aluminum alloy with Ag addition is attributed to the high volume fraction of Ω phase.
文摘Mechanical properties of micro-structured porous silicon film (PS) were studied combining X-ray diffraction with micro-Raman spectroscopy. The micro-structured porous silicon samples with different porosities ranging from 30.7700 to 96.2500 were obtained by chemical etching. Lattice parameters of the samples were measured using X-ray diffraction and its maximal change is up to (1.000.) This lattice mismatch with the bulk silicon substrate may introduce residual stress to the porous film. The residual stress measurement by micro-Raman spectroscopy reveals that the maximum of tensile residual stress has reached GPa level in the porous film. Moreover, the lattice mismatch and its corresponding residual stress are increasing with the porosity of PS, but average (elastic) modulus is about 14.5 GPa, one order of magnitude lower than that of substrate Si. The mechanical properties of PS have a close relation with its micro-pore structure.
基金Project(2014CB046702) supported by the National Basic Research Program of ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘The 1050 aluminum alloy strip was prepared by means of electromagnetic and ultrasonic cast rolling on the modified asymmetric twin roll caster, and then the aluminum substrate for presensitized plate was prepared through cold rolling and annealing.The effects of electromagnetic and ultrasonic cast rolling on microstructure, mechanical properties, surface roughness and electrolytic corrosion properties of 1050 aluminum substrate were studied. The results show that electromagnetic and ultrasonic cast rolling can decrease the average crystallite size of aluminum substrate by 5 μm, increase the crystal boundaries with uniform distribution, and make the second-phase particles with smaller size distributed dispersively in the substrate, meanwhile, it can increase the tensile strength, elongation and micro-hardness by 4.58%, 9.85% and HV 2, respectively, reduce the surface roughness, make the surface appearance more even, electrolytic corrosion polarization curve of aluminum substrate more smooth and the surface corrosion pits with regular shape more dispersive.
基金Project(2005CB623700) supported by the National Basic Research Program of China
文摘The effects of Yb content on the microstructures and mechanical properties of 2519A aluminum alloy plate were investigated by means of tensile test,optical microscopy,transmission electron microscopy,scanning electron microscopy and X-ray diffractometer.The results show that addition of 0.17% (mass fraction) Yb increases the density of θ' particles of the 2519A alloy plate and reduces the coarsening speed rate of θ' phase at 300 ℃.Therefore,tensile strength is enhanced from 483.2 MPa to 501.0 MPa at room temperature and is improved from 139.5 MPa to 169.4 MPa at 300 ℃.The results also show that with the addition of 0.30% (mass fraction) Yb,the mechanical properties increase at 300 ℃ and decrease at room temperature.With Yb additions,the Al7.4Cu9.6Yb2 phase is found whilst the segregated phases of as-cast alloys along grain boundaries become discontinuous,thin and spheroidized.
基金Supported by "863"High Technology Projects(No. 2002AA332080)
文摘Studies on the sintering, microstructure, mechanical properties and low temperature degradation behavior of yttria stabilized-tetragonal zirconia polycrystal (3Y-TZP) were carried out. The results show that the addition of Al2O3 and MgO improve the sintering at low temperatures, and cause exaggerated grain growth and the transformation of tetragonaI-ZrO2 to monoclinic-ZrO2 with corresponding changes in the mechanical properties. The addition of the yttria-free monoclinic zirconia particles change the overall yttria distribution and induce an active transformation toughening mechanism. Furthermore, the dispersed yttria-free ZrO2 can inhibit the tetragonal zirconia transformation, which is beneficial to the improvement of the low temperature degradation behavior of 3Y- TZP ceramics.
文摘The effects of Mg addition on mechanical thermo-electrical properties of Al.Mg/5%Al2O3 nanocomposite with differentMg contents (0, 5%, 10% and 20%) produced by mechanical alloying were studied. Scanning electron microscopy analysis (SEM),X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM) were used to characterize the produced powder. Theresults show that addition of Mg forms a predominant phase (Al.Mg solid solution). By increasing the mass fraction of Mg, thecrystallite size decreases and the lattice strain increases which results from the atomic penetration of Mg atoms into the substitutionalsites of Al lattice. The microhardness of the composite increases with the increase of the Mg content. The thermal and electricalconductivities increase linearly with the temperature increase in the inspected temperature range. Moreover, the thermalconductivity increases with the increase of Mg content.
文摘This paper presents the effect of Fe on the microstructure and mechanical properties of Al-9Mg-2.6Si alloy.The Feaddition in the Al-9Mg-2.6Si alloy can slightly increase the yield strength but decrease the elongation.With a much higher Feaddition around1.6wt.%,the elongation of the alloy can still maintain a usable level of5%.This alloy has shown a high toleranceon the Fe contamination