方块谐振器的品质因数(Q)很高,但是插入损耗也很大。为了得到低相噪的微机电系统(MEMS)振荡器,需要进一步提高方块谐振器的Q值,降低谐振器的插入损耗。通过支撑梁位置的合理设计可以达到极小的锚点损耗,从而实现非常高的品质因数。采用...方块谐振器的品质因数(Q)很高,但是插入损耗也很大。为了得到低相噪的微机电系统(MEMS)振荡器,需要进一步提高方块谐振器的Q值,降低谐振器的插入损耗。通过支撑梁位置的合理设计可以达到极小的锚点损耗,从而实现非常高的品质因数。采用二阶面切变模态方块谐振器的设计方法,表现出了很多的优越性:Q值更高,动态电阻更小(在间隙为0.25μm时达到82.1?)。基于这种新型谐振器设计出的振荡器实现的相位噪声为:–156 d Bc/Hz@1 k Hz。展开更多
近年来兴起的人工神经网络由于具有较强的自学习适应性和并行信息处理能力,从而在信号处理领域显示出巨大潜力。储备池计算是一种由递归神经网络衍生而来的类脑神经形态计算范式,对随时间变化的连续信号具有非常好的分类和时序预测能力...近年来兴起的人工神经网络由于具有较强的自学习适应性和并行信息处理能力,从而在信号处理领域显示出巨大潜力。储备池计算是一种由递归神经网络衍生而来的类脑神经形态计算范式,对随时间变化的连续信号具有非常好的分类和时序预测能力。本论文提出利用MEMS(Micro-Electro-Mechanical System)梁谐振器的非线性响应特征,设计并搭建了两种储备池计算的拓扑架构。此外,面向雷达信号处理中信号预测、图像识别、雷达信号特征分类和提取等应用需求,针对性地选择了NARMA(Nonlinear Auto Regressive Moving Average Equation of Order)预测任务、MNIST(Mixed National Institute of Standards and Technology)-手写数字图像识别、LFM(Linear frequency modulated)脉冲波形识别与特征提取等测试任务对论文所提两种不同储备池计算架构进行试验验证。同时,实验结果也充分展示了基于非线性MEMS谐振器的储备池计算硬件系统在雷达信号预测、分类与特征提取等应用领域中的应用潜力。为复杂电磁环境下,雷达信号处理提供新的有力工具,也为MEMS传感技术与雷达信号处理技术的交叉融合进行积极探索。展开更多
文摘方块谐振器的品质因数(Q)很高,但是插入损耗也很大。为了得到低相噪的微机电系统(MEMS)振荡器,需要进一步提高方块谐振器的Q值,降低谐振器的插入损耗。通过支撑梁位置的合理设计可以达到极小的锚点损耗,从而实现非常高的品质因数。采用二阶面切变模态方块谐振器的设计方法,表现出了很多的优越性:Q值更高,动态电阻更小(在间隙为0.25μm时达到82.1?)。基于这种新型谐振器设计出的振荡器实现的相位噪声为:–156 d Bc/Hz@1 k Hz。
文摘近年来兴起的人工神经网络由于具有较强的自学习适应性和并行信息处理能力,从而在信号处理领域显示出巨大潜力。储备池计算是一种由递归神经网络衍生而来的类脑神经形态计算范式,对随时间变化的连续信号具有非常好的分类和时序预测能力。本论文提出利用MEMS(Micro-Electro-Mechanical System)梁谐振器的非线性响应特征,设计并搭建了两种储备池计算的拓扑架构。此外,面向雷达信号处理中信号预测、图像识别、雷达信号特征分类和提取等应用需求,针对性地选择了NARMA(Nonlinear Auto Regressive Moving Average Equation of Order)预测任务、MNIST(Mixed National Institute of Standards and Technology)-手写数字图像识别、LFM(Linear frequency modulated)脉冲波形识别与特征提取等测试任务对论文所提两种不同储备池计算架构进行试验验证。同时,实验结果也充分展示了基于非线性MEMS谐振器的储备池计算硬件系统在雷达信号预测、分类与特征提取等应用领域中的应用潜力。为复杂电磁环境下,雷达信号处理提供新的有力工具,也为MEMS传感技术与雷达信号处理技术的交叉融合进行积极探索。