An integrated micro positioning xy-stage with a 2mm × 2mm-area shuttle is fabricated for application in nano- meter-scale operation and nanometric positioning precision. It is mainly composed of a silicon-based x...An integrated micro positioning xy-stage with a 2mm × 2mm-area shuttle is fabricated for application in nano- meter-scale operation and nanometric positioning precision. It is mainly composed of a silicon-based xy-stage,electrostatics comb actuator,and a displacement sensor based on a vertical sidewall surface piezoresistor. They are all in a monolithic chip and developed using double-sided bulk-micromachining technology. The high-aspect-ratio comb-driven xy-stage is achieved by deep reactive ion etching (DRIE) in both sides of the wafer. The detecting piezoresistor is located at the vertical sidewall surface of the detecting beam to improve the sensitivity and displacement resolution of the piezoresistive sensors using the DRIE technology combined with the ion implantation technology. The experimental results verify the integrated micro positioning xy-stage design including the micro xy-stage, electrostatics comb actuator,and the vertical sidewall surface piezoresistor technique. The sensitivity of the fabricated piezoresistive sensors is better than 1.17mV/μm without amplification and the linearity is better than 0. 814%. Under 30V driving voltage, a ± 10vm single-axis displacement is measured without crosstalk and the resonant frequency is measured at 983Hz in air.展开更多
Micro heat pipe(MHP) is applied to implement the efficient heat transfer of light emitting diode(LED) device.The fabrication of MHP is based on micro-electro-mechanical-system(MEMS) technique,15 micro grooves were etc...Micro heat pipe(MHP) is applied to implement the efficient heat transfer of light emitting diode(LED) device.The fabrication of MHP is based on micro-electro-mechanical-system(MEMS) technique,15 micro grooves were etched on one side of silicon(Si) substrate,which was then packaged with aluminum heat sink to form an MHP.On the other side of Si substrate,three LED chips were fixed by die bonding.Then experiments were performed to study the thermal performance of this LED device.The results show that the LED device with higher filling ratio is better when the input power is 1.0 W; with the increase of input power,the optimum filling ratio changes from 30% to 48%,and the time reaching stable state is reduced; when the input power is equal to 2.5 W,only the LED device with filling ratio of 48% can work normally.So integrating MHP into high-power LED device can implement the effective control of junction temperature.展开更多
文摘An integrated micro positioning xy-stage with a 2mm × 2mm-area shuttle is fabricated for application in nano- meter-scale operation and nanometric positioning precision. It is mainly composed of a silicon-based xy-stage,electrostatics comb actuator,and a displacement sensor based on a vertical sidewall surface piezoresistor. They are all in a monolithic chip and developed using double-sided bulk-micromachining technology. The high-aspect-ratio comb-driven xy-stage is achieved by deep reactive ion etching (DRIE) in both sides of the wafer. The detecting piezoresistor is located at the vertical sidewall surface of the detecting beam to improve the sensitivity and displacement resolution of the piezoresistive sensors using the DRIE technology combined with the ion implantation technology. The experimental results verify the integrated micro positioning xy-stage design including the micro xy-stage, electrostatics comb actuator,and the vertical sidewall surface piezoresistor technique. The sensitivity of the fabricated piezoresistive sensors is better than 1.17mV/μm without amplification and the linearity is better than 0. 814%. Under 30V driving voltage, a ± 10vm single-axis displacement is measured without crosstalk and the resonant frequency is measured at 983Hz in air.
基金supported by the State Key Development Program for Basic Research of China(No.2011CB013105)
文摘Micro heat pipe(MHP) is applied to implement the efficient heat transfer of light emitting diode(LED) device.The fabrication of MHP is based on micro-electro-mechanical-system(MEMS) technique,15 micro grooves were etched on one side of silicon(Si) substrate,which was then packaged with aluminum heat sink to form an MHP.On the other side of Si substrate,three LED chips were fixed by die bonding.Then experiments were performed to study the thermal performance of this LED device.The results show that the LED device with higher filling ratio is better when the input power is 1.0 W; with the increase of input power,the optimum filling ratio changes from 30% to 48%,and the time reaching stable state is reduced; when the input power is equal to 2.5 W,only the LED device with filling ratio of 48% can work normally.So integrating MHP into high-power LED device can implement the effective control of junction temperature.