This paper presents software reliability growth models(SRGMs) with change-point based on the stochastic differential equation(SDE).Although SRGMs based on SDE have been developed in a large scale software system,consi...This paper presents software reliability growth models(SRGMs) with change-point based on the stochastic differential equation(SDE).Although SRGMs based on SDE have been developed in a large scale software system,considering the variation of failure distribution in the existing models during testing time is limited.These SDE SRGMs assume that failures have the same distribution.However,in practice,the fault detection rate can be affected by some factors and may be changed at certain point as time proceeds.With respect to this issue,in this paper,SDE SRGMs with changepoint are proposed to precisely reflect the variations of the failure distribution.A real data set is used to evaluate the new models.The experimental results show that the proposed models have a fairly accurate prediction capability.展开更多
基金Supported by the International Science&Technology Cooperation Program of China(No.2010DFA14400)the National Natural Science Foundation of China(No.60503015)the National High Technology Research and Development Programme of China(No.2008AA01A201)
文摘This paper presents software reliability growth models(SRGMs) with change-point based on the stochastic differential equation(SDE).Although SRGMs based on SDE have been developed in a large scale software system,considering the variation of failure distribution in the existing models during testing time is limited.These SDE SRGMs assume that failures have the same distribution.However,in practice,the fault detection rate can be affected by some factors and may be changed at certain point as time proceeds.With respect to this issue,in this paper,SDE SRGMs with changepoint are proposed to precisely reflect the variations of the failure distribution.A real data set is used to evaluate the new models.The experimental results show that the proposed models have a fairly accurate prediction capability.