We have demonstrated a one-step and effective electrochemical method to synthesize graphene/MnO2 nanowall hybrids (GMHs). Graphene oxide (GO) was electrochemically reduced to graphene (GN), accompanied by the si...We have demonstrated a one-step and effective electrochemical method to synthesize graphene/MnO2 nanowall hybrids (GMHs). Graphene oxide (GO) was electrochemically reduced to graphene (GN), accompanied by the simultaneous formation of MnO2 with a nanowall morphology via cathodic electrochemical deposition. The morphology and structure of the GMHs were systematically characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The resulting GMHs combine the advantages of GN and the nanowall array morphology of MnO2 in providing a conductive network of amorphous nanocomposite, which shows good electrochemical capacitive behavior. This simple approach should find practical applications in the large-scale production of GMHs.展开更多
In order to understand the current interface characteristics of wood-hybrid composites, this paper starts off from the concept of composite interface and general theory of interface form, then the inner-surface and mi...In order to understand the current interface characteristics of wood-hybrid composites, this paper starts off from the concept of composite interface and general theory of interface form, then the inner-surface and microstructure of wood and the interface characteristics of composites, such as wood- inorganic, wood- plastic and wood- metal made by electroless plating technique, are concluded and discussed in detail. Meanwhile, on the basis of that, some points of view about how to develop the wood-hybrid composites interface research in the future are also proposed.展开更多
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Nos. 20935003 and 20820102037) and the 973 Project (No. 2010CB933603).
文摘We have demonstrated a one-step and effective electrochemical method to synthesize graphene/MnO2 nanowall hybrids (GMHs). Graphene oxide (GO) was electrochemically reduced to graphene (GN), accompanied by the simultaneous formation of MnO2 with a nanowall morphology via cathodic electrochemical deposition. The morphology and structure of the GMHs were systematically characterized by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy. The resulting GMHs combine the advantages of GN and the nanowall array morphology of MnO2 in providing a conductive network of amorphous nanocomposite, which shows good electrochemical capacitive behavior. This simple approach should find practical applications in the large-scale production of GMHs.
基金Supported by the National Natural Science Foundation of China (Grant No.30070606)
文摘In order to understand the current interface characteristics of wood-hybrid composites, this paper starts off from the concept of composite interface and general theory of interface form, then the inner-surface and microstructure of wood and the interface characteristics of composites, such as wood- inorganic, wood- plastic and wood- metal made by electroless plating technique, are concluded and discussed in detail. Meanwhile, on the basis of that, some points of view about how to develop the wood-hybrid composites interface research in the future are also proposed.