The coupling of the sun's gravitational field with processes of diffusion and convection exerts a significant influence on the dynamical behavior of the core 3He nuclear reaction-diffusion system. Stability analys...The coupling of the sun's gravitational field with processes of diffusion and convection exerts a significant influence on the dynamical behavior of the core 3He nuclear reaction-diffusion system. Stability analyses of the system are made in this paper by using the theory of nonequilibrium dynamics. It is showed that, in the nuclear reaction regions extending from the center to about 0.38 times of the radius of the sun, the gravitational field enables the core 3He nuclear reaction-diffusion system to become unstable and, after the instability, new states to appear in the system have characteristic of time oscillation. This may change the production rates of both 7Be and 8B neutrinos.展开更多
By using the nuclear reaction model for light nuclei, the calculations of the double-differential cross sections of outgoing neutrons from n +^9Be reactions are performed. The total outgoing neutrons are only come fr...By using the nuclear reaction model for light nuclei, the calculations of the double-differential cross sections of outgoing neutrons from n +^9Be reactions are performed. The total outgoing neutrons are only come from the (n, 2n)2a reaction channel. The (n, 2n)2a reaction channel is achieved through six different reaction approach, which are illustrated in this paper. The calculated results agree very well with the measured data at En = 7.1, 8.09, 8.17, 9.09, 9.97 and 10.26 MeV, because the updated level schemes related to the n + ^9Be reactions have been employed in this calculations.展开更多
A series of compounds containing the 1H-pyrazino[1,2-a]quinoxaline-1,5(6H)-dione scaffold have been synthesized using a one-pot procedure under microwave irradiation. This new strategy allowed for the facile synthesis...A series of compounds containing the 1H-pyrazino[1,2-a]quinoxaline-1,5(6H)-dione scaffold have been synthesized using a one-pot procedure under microwave irradiation. This new strategy allowed for the facile synthesis of target compounds in good yields and could be readily applied to the construction of diverse libraries of compounds for high throughput screening in medicinal chemistry.展开更多
A detailed description of the baryon direct Urca processes A: n → p + e + ν_e, B: Λ→ p + e + ν_e and C: Ξ^-→Λ + e + ν_e related to the neutron star cooling is given in the relativistic mean field approximatio...A detailed description of the baryon direct Urca processes A: n → p + e + ν_e, B: Λ→ p + e + ν_e and C: Ξ^-→Λ + e + ν_e related to the neutron star cooling is given in the relativistic mean field approximation. The contributions of the reactions B and C on the neutrino luminosity are calculated by means of the relativistic expressions of the neutrino energy losses. Our results show that the total neutrino luminosities of the reactions A, B and C within the mass range(1.603–2.067) M_⊙((1.515–1.840) M_⊙ for TM1 model) for GM1 model are larger than the corresponding values for neutron star without hyperons. Furthermore, although the neutrino emissivity of the reaction A is suppressed with the appearance of the proton ~1S_0 superfluid, the contribution of the reactions B and C can still quicken a massive neutron star cooling. In particular, the reaction C in PSR J1614-2230 and J0348+0432 is not suppressed by the proton ~1S_0 superfluid due to the higher threshold density of the reaction C, which will further speed up the two pulsars cooling.展开更多
文摘The coupling of the sun's gravitational field with processes of diffusion and convection exerts a significant influence on the dynamical behavior of the core 3He nuclear reaction-diffusion system. Stability analyses of the system are made in this paper by using the theory of nonequilibrium dynamics. It is showed that, in the nuclear reaction regions extending from the center to about 0.38 times of the radius of the sun, the gravitational field enables the core 3He nuclear reaction-diffusion system to become unstable and, after the instability, new states to appear in the system have characteristic of time oscillation. This may change the production rates of both 7Be and 8B neutrinos.
基金Supported by the National Natural Science Foundation of China under Grant No.10547005
文摘By using the nuclear reaction model for light nuclei, the calculations of the double-differential cross sections of outgoing neutrons from n +^9Be reactions are performed. The total outgoing neutrons are only come from the (n, 2n)2a reaction channel. The (n, 2n)2a reaction channel is achieved through six different reaction approach, which are illustrated in this paper. The calculated results agree very well with the measured data at En = 7.1, 8.09, 8.17, 9.09, 9.97 and 10.26 MeV, because the updated level schemes related to the n + ^9Be reactions have been employed in this calculations.
基金supported by the Scientific Research Foundation of Chongqing University of Arts and Sciences(R2013XY01,R2013XY02)the Chongqing Science and Technology Commission(CSTC2013JCYJA50028)SRF for ROCS,SEM
文摘A series of compounds containing the 1H-pyrazino[1,2-a]quinoxaline-1,5(6H)-dione scaffold have been synthesized using a one-pot procedure under microwave irradiation. This new strategy allowed for the facile synthesis of target compounds in good yields and could be readily applied to the construction of diverse libraries of compounds for high throughput screening in medicinal chemistry.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11447165,11373047,11404336 and U1731240Youth Innovation Promotion Association,CAS under Grant No.2016056the Development Project of Science and Technology of Jilin Province under Grant No.20180520077JH
文摘A detailed description of the baryon direct Urca processes A: n → p + e + ν_e, B: Λ→ p + e + ν_e and C: Ξ^-→Λ + e + ν_e related to the neutron star cooling is given in the relativistic mean field approximation. The contributions of the reactions B and C on the neutrino luminosity are calculated by means of the relativistic expressions of the neutrino energy losses. Our results show that the total neutrino luminosities of the reactions A, B and C within the mass range(1.603–2.067) M_⊙((1.515–1.840) M_⊙ for TM1 model) for GM1 model are larger than the corresponding values for neutron star without hyperons. Furthermore, although the neutrino emissivity of the reaction A is suppressed with the appearance of the proton ~1S_0 superfluid, the contribution of the reactions B and C can still quicken a massive neutron star cooling. In particular, the reaction C in PSR J1614-2230 and J0348+0432 is not suppressed by the proton ~1S_0 superfluid due to the higher threshold density of the reaction C, which will further speed up the two pulsars cooling.