To solve the problem of difficult machining, the near-net shaped Al/SiCP composites with high volume fraction of SiC particles were fabricated by vacuum-pressure infiltration. The SiCP preform with a complex shape was...To solve the problem of difficult machining, the near-net shaped Al/SiCP composites with high volume fraction of SiC particles were fabricated by vacuum-pressure infiltration. The SiCP preform with a complex shape was prepared by gelcasting. Pure Al, Al4Mg, and Al4Mg2Si were used as the matrices, respectively. The results indicate that the optimal parameters of SiCP suspension in gelcasting process are pH value of 10, TMAH content of 0.5 wt.%, and solid loading of 52 vol.%. The Al matrix alloyed with Mg contributes to improving the interfacial wettability of the matrix and SiC particles, which increases the relative density of the composite. The Al matrix alloyed with Si is beneficial to inhibiting the formation of the detrimental Al4C3 phases. The Al4Mg2Si/SiCP composite exhibits high relative density of 99.2%, good thermal conductivity of 150 W·m^-1·K^-1, low coefficient of thermal expansion of 10.1×10^-6 K^-1, and excellent bending strength of 489 MPa.展开更多
Crystal plasticity theory was used to simulate upsetting tests of different dimensions and grain size micro copper cylinders in this study on the fluctuant flow stress scale effect. Results showed that with the decrea...Crystal plasticity theory was used to simulate upsetting tests of different dimensions and grain size micro copper cylinders in this study on the fluctuant flow stress scale effect. Results showed that with the decrease of billet grain quantity, flow stress fluctuation is not always increased, but there is a maximum. Through this study, the fluctuant flow stress scale effect can be understood deeper, and relevant necessary information was obtained for further prediction and control of this scale effect and to design the microforming process and die.展开更多
A new severe plastic deformation method for manufacturing tubes made of AZ31 magnesium alloy with a large diameter was developed,which is called the TCESE(tube continuous extrusion−shear−expanding)process.The process ...A new severe plastic deformation method for manufacturing tubes made of AZ31 magnesium alloy with a large diameter was developed,which is called the TCESE(tube continuous extrusion−shear−expanding)process.The process combines direct extrusion with a two-step shear−expanding process.The influences of expanding ratios,extrusion temperatures on the deformation of finite element meshes,strain evolution and flow velocity of tube blanks during the TCESE process were researched based on numerical simulations by using DEFORM-3D software.Simulation results show that the maximum expanding ratio is 3.0 in the TCESE process.The deformation of finite element meshes of tube blanks is inhomogeneous in the shear−expanding zone,and the equivalent strains increase significantly during the TCESE process of the AZ31 magnesium alloy.A extrusion temperature of 380°C and expanding ratio of 2.0 were selected as the optimized process parameters from the numerical simulation results.The average grain size of tubes fabricated by the TCESE process is approximately 10μm.The TCESE process can refine grains of magnesium alloy tubes with the occurrence of dynamic recrystallization.The(0001)basal texture intensities of the magnesium alloy tube blanks decrease due to continuous plastic deformation during the TCESE process.The average hardness of the extruded tubes is approximately HV 75,which is obviously improved.展开更多
The effect of dynamic recrystallization(DRX)on the microstructure and mechanical properties of 6063 aluminum alloy profile during porthole die extrusion was studied through experiment and simulation.The grain morpholo...The effect of dynamic recrystallization(DRX)on the microstructure and mechanical properties of 6063 aluminum alloy profile during porthole die extrusion was studied through experiment and simulation.The grain morphology was observed by means of electron backscatter diffraction(EBSD)technology.The results show that,at low ram speeds,increasing the ram speed caused an increase in DRX fraction due to the increase of temperature and strain rate.In contrast,at high ram speeds,further increasing ram speed had much less effect on the temperature,and the DRX faction decreased due to high stain rates.The microhardness and fraction of low angle boundaries in the welding zones were lower than those in the matrix zones.The grain size in the welding zone was smaller than that in the matrix zone due to lower DRX fraction.The decrease of grain size and increase of extrudate temperature were beneficial to the improvement of microhardness.展开更多
Leakage is one of the most important reasons for failure of hydraulic systems.The accurate positioning of leakage is of great significance to ensure the safe and reliable operation of hydraulic systems.For early stage...Leakage is one of the most important reasons for failure of hydraulic systems.The accurate positioning of leakage is of great significance to ensure the safe and reliable operation of hydraulic systems.For early stage of leakage,the pressure of the hydraulic circuit does not change obviously and therefore cannot be monitored by pressure sensors.Meanwhile,the pressure of the hydraulic circuit changes frequently due to the influence of load and state of the switch,which further reduces the accuracy of leakage localization.In the work,a novel Bayesian networks(BNs)-based data-driven early leakage localization approach for multi-valve systems is proposed.Wavelet transform is used for signal noise reduction and BNs-based leak localization model is used to identify the location of leakage.A normalization model is developed to improve the robustness of the leakage localization model.A hydraulic system with eight valves is used to demonstrate the application of the proposed early micro-leakage detection and localization approach.展开更多
A new serve plastic deformation(SPD) including initial forward extrusion and subsequent shearing process(ES) was proposed.The influence of the ES forming on the grain refinement of the microstructure was researched.Th...A new serve plastic deformation(SPD) including initial forward extrusion and subsequent shearing process(ES) was proposed.The influence of the ES forming on the grain refinement of the microstructure was researched.The components of ES forming die were manufactured and installed to Gleeble1500D thermo-mechanical simulator.The microstructure observations were carried out on the as-extruded rods(as-received) and ES formed rods.From the simulation results,ES forming can increase the cumulative strain enormously and the volume fraction of dynamic recrystallization.From the physical modeling results,the microstructures can be refined.展开更多
The pressure swing adsorption (PSA) models discussed here are divided into three categories: partialdifferential equation model, electrical analogue model and neural network model. The partial differential equationmod...The pressure swing adsorption (PSA) models discussed here are divided into three categories: partialdifferential equation model, electrical analogue model and neural network model. The partial differential equationmodel, including equilibrium and kinetic models, has provided an elementary viewpoint for PSA processes. Usingthe simplest equilibrium models, some influential factors, such as pressurization with product, incomplete purge,beds with dead volume and heat effects, are discussed respectively. With several approximate assumptions i.e.,concentration profile in adsorbent, 'frozen' column, symmetry and heat effects of bed wall, the more complexkinetic models can be simplified to a certain degree at the expense of a limited application. It has also been foundthat the electrical analogue model has great flexibility to handle more realistic PSA processes without any additionalhypothesis.展开更多
A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed r...A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed ratio are determined by integrating differential equations based on rolling parameters.The lubrication characteristics at the roll-strip interface with different surface roughness,rolling speed,reduction and lubricant viscosity are analyzed respectively.Additionally,the average volume flow rates of lubricant under different rolling conditions are calculated and used to explain the change rule of lubrication characteristics.The developed scheme is able to determine the total pressure,lubricant pressure,film thickness and real contact area at any point within the work zone.The prediction and analysis of mixed lubrication characteristics at the interface is meaningful to better control the surface quality and optimize the rolling process.展开更多
Since the CPU of embed system has some limitation in operating speed, a new filter was put forward which implemented mountain template convolution by performing rectangle template convolution two times. It can obtain ...Since the CPU of embed system has some limitation in operating speed, a new filter was put forward which implemented mountain template convolution by performing rectangle template convolution two times. It can obtain time and frequency localization with computational complexity greatly reduced. This algorithm was applied to lightning waveforms (include chopped waveforms) parameter calculation. It simplifies the computation and the results pretreated by this algorithm are in accord with IEC1083-2 completely. It was applied in embed system successfully. Its capability in frequency restraining was researched. The validity of the algorithm was proved in theory when processing lightning waves. The standard sources and the processing results are consistent completely.展开更多
In order to realize information construction on settlement of pile-group foundation of Sutong Bridge, the monitoring instruments of high-precision micro-pressure sensor and hydrostatic leveling and settlement profiler...In order to realize information construction on settlement of pile-group foundation of Sutong Bridge, the monitoring instruments of high-precision micro-pressure sensor and hydrostatic leveling and settlement profiler were integrated synthetically. A set of practical multi-scale monitoring system on settlement of super-large pile-group foundation in deep water was put forward. The reliable settlement results are obtained by means of multi-sensor data fusion. Finite element model of pile-group foundation is established. By analysis of finite element simulated calculation of pile-group foundation, rules of settlement and uneven settlement obtained by monitoring and calculation results are coincident and the absolute error of settlement between them is 4.7 mm. The research shows that it is reasonable and feasible to monitor settlement of pile-group foundation with the system, and it can provide a method for the same type pile-group foundation in deep water.展开更多
It has been suggested that microcracks do play a key role in the triggering of the bone remodeling process.In order to evaluate the influence of microcracks on the poroelastic behaviors of an osteon,a finite element m...It has been suggested that microcracks do play a key role in the triggering of the bone remodeling process.In order to evaluate the influence of microcracks on the poroelastic behaviors of an osteon,a finite element model is established and investigated by using the Comsol Multiphysics software.The findings show that the presence of a microcrack in the osteon wall strongly modifies(enlarges)its local fluid pressure and velocity.Especially,the pressure and velocity amplitudes produced in the microcracked region are larger than those of the non-cracked region.Thus,this study can also be used for proposing a likely mechanism that bone can sense the changes of surrounding mechanical environments.展开更多
Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are ...Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are neglected. This study extends the half-space model by accounting for the influence of cell geometry and compressibility(sphere model). Using a finite element analysis of cell aspiration into a micropipette, an elastic approximation formula of the aspirated length was derived for the sphere model. The approximation formula includes the geometry parameter of the sphere model(ζ = R/a, R is the radius of the cell, and a is the inner radius of the micropipette) and the Poisson's ratio v of the cell. The results indicate that the parameter and Poisson's ratio v markedly affect the aspirated length, particularly for small and v. When ζ→∞ and v→0.5,the approximation formula tends to the analytical solution for the half-space model. In the incompressible case(v = 0.5), within the general experimental range(ζ varying from 2 to 4), the difference between the analytical solution and the approximate one is significant, and is up to 29% of the approximation solution when ζ= 2. Additionally, parametere was introduced to evaluate the error of elastic moduli between the half-space model and sphere model. Based on the approximation formula, the ζ thresholds, beyond which e becomes larger than 10% and 20%, were derived.展开更多
基金Project (CXZZ20140506150310438) supported by the Science and Technology Program of Shenzhen City, ChinaProject (2017GK2261) supported by the Science and Technology Program of Hunan Province, ChinaProject (2017zzts111) supported by the Fundamental Research Funds for the Central Universities, China。
文摘To solve the problem of difficult machining, the near-net shaped Al/SiCP composites with high volume fraction of SiC particles were fabricated by vacuum-pressure infiltration. The SiCP preform with a complex shape was prepared by gelcasting. Pure Al, Al4Mg, and Al4Mg2Si were used as the matrices, respectively. The results indicate that the optimal parameters of SiCP suspension in gelcasting process are pH value of 10, TMAH content of 0.5 wt.%, and solid loading of 52 vol.%. The Al matrix alloyed with Mg contributes to improving the interfacial wettability of the matrix and SiC particles, which increases the relative density of the composite. The Al matrix alloyed with Si is beneficial to inhibiting the formation of the detrimental Al4C3 phases. The Al4Mg2Si/SiCP composite exhibits high relative density of 99.2%, good thermal conductivity of 150 W·m^-1·K^-1, low coefficient of thermal expansion of 10.1×10^-6 K^-1, and excellent bending strength of 489 MPa.
文摘Crystal plasticity theory was used to simulate upsetting tests of different dimensions and grain size micro copper cylinders in this study on the fluctuant flow stress scale effect. Results showed that with the decrease of billet grain quantity, flow stress fluctuation is not always increased, but there is a maximum. Through this study, the fluctuant flow stress scale effect can be understood deeper, and relevant necessary information was obtained for further prediction and control of this scale effect and to design the microforming process and die.
基金financially supported by the National Natural Science Foundation of China (Nos.52071042,51771038)the Chongqing Talent Plan,China (No.CQYC202003047)Chongqing Natural Science Foundation,China (Nos.cstc2018jcyj AX0249,cstc2018jcyj AX0653)。
文摘A new severe plastic deformation method for manufacturing tubes made of AZ31 magnesium alloy with a large diameter was developed,which is called the TCESE(tube continuous extrusion−shear−expanding)process.The process combines direct extrusion with a two-step shear−expanding process.The influences of expanding ratios,extrusion temperatures on the deformation of finite element meshes,strain evolution and flow velocity of tube blanks during the TCESE process were researched based on numerical simulations by using DEFORM-3D software.Simulation results show that the maximum expanding ratio is 3.0 in the TCESE process.The deformation of finite element meshes of tube blanks is inhomogeneous in the shear−expanding zone,and the equivalent strains increase significantly during the TCESE process of the AZ31 magnesium alloy.A extrusion temperature of 380°C and expanding ratio of 2.0 were selected as the optimized process parameters from the numerical simulation results.The average grain size of tubes fabricated by the TCESE process is approximately 10μm.The TCESE process can refine grains of magnesium alloy tubes with the occurrence of dynamic recrystallization.The(0001)basal texture intensities of the magnesium alloy tube blanks decrease due to continuous plastic deformation during the TCESE process.The average hardness of the extruded tubes is approximately HV 75,which is obviously improved.
基金Project(U1664252)supported by the National Natural Science Foundation of China
文摘The effect of dynamic recrystallization(DRX)on the microstructure and mechanical properties of 6063 aluminum alloy profile during porthole die extrusion was studied through experiment and simulation.The grain morphology was observed by means of electron backscatter diffraction(EBSD)technology.The results show that,at low ram speeds,increasing the ram speed caused an increase in DRX fraction due to the increase of temperature and strain rate.In contrast,at high ram speeds,further increasing ram speed had much less effect on the temperature,and the DRX faction decreased due to high stain rates.The microhardness and fraction of low angle boundaries in the welding zones were lower than those in the matrix zones.The grain size in the welding zone was smaller than that in the matrix zone due to lower DRX fraction.The decrease of grain size and increase of extrudate temperature were beneficial to the improvement of microhardness.
基金Project(51779267)supported by the National Natural Science Foundation of ChinaProject(2019YFE0105100)supported by the National Key Research and Development Program of China+2 种基金Project(tsqn201909063)supported by the Taishan Scholars Project,ChinaProject(20CX02301A)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2019KJB016)supported by the Science and Technology Support Plan for Youth Innovation of Universities in Shandong Province,China。
文摘Leakage is one of the most important reasons for failure of hydraulic systems.The accurate positioning of leakage is of great significance to ensure the safe and reliable operation of hydraulic systems.For early stage of leakage,the pressure of the hydraulic circuit does not change obviously and therefore cannot be monitored by pressure sensors.Meanwhile,the pressure of the hydraulic circuit changes frequently due to the influence of load and state of the switch,which further reduces the accuracy of leakage localization.In the work,a novel Bayesian networks(BNs)-based data-driven early leakage localization approach for multi-valve systems is proposed.Wavelet transform is used for signal noise reduction and BNs-based leak localization model is used to identify the location of leakage.A normalization model is developed to improve the robustness of the leakage localization model.A hydraulic system with eight valves is used to demonstrate the application of the proposed early micro-leakage detection and localization approach.
基金Project(2007CB613700) supported by the National Basic Research Program of ChinaProject(2007BAG06B04) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan Period+1 种基金Project(50725413) supported by the National Natural Science Foundation of ChinaProject(CSTC2009AB4008) supported by Chongqing Science and Technology Development Program,China
文摘A new serve plastic deformation(SPD) including initial forward extrusion and subsequent shearing process(ES) was proposed.The influence of the ES forming on the grain refinement of the microstructure was researched.The components of ES forming die were manufactured and installed to Gleeble1500D thermo-mechanical simulator.The microstructure observations were carried out on the as-extruded rods(as-received) and ES formed rods.From the simulation results,ES forming can increase the cumulative strain enormously and the volume fraction of dynamic recrystallization.From the physical modeling results,the microstructures can be refined.
基金Supported by the National Natural Science Foundation of China (No. 29876011).
文摘The pressure swing adsorption (PSA) models discussed here are divided into three categories: partialdifferential equation model, electrical analogue model and neural network model. The partial differential equationmodel, including equilibrium and kinetic models, has provided an elementary viewpoint for PSA processes. Usingthe simplest equilibrium models, some influential factors, such as pressurization with product, incomplete purge,beds with dead volume and heat effects, are discussed respectively. With several approximate assumptions i.e.,concentration profile in adsorbent, 'frozen' column, symmetry and heat effects of bed wall, the more complexkinetic models can be simplified to a certain degree at the expense of a limited application. It has also been foundthat the electrical analogue model has great flexibility to handle more realistic PSA processes without any additionalhypothesis.
基金Project(2012BAF09B04)supported by the National Key Technology Research and Development Program of China
文摘A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed ratio are determined by integrating differential equations based on rolling parameters.The lubrication characteristics at the roll-strip interface with different surface roughness,rolling speed,reduction and lubricant viscosity are analyzed respectively.Additionally,the average volume flow rates of lubricant under different rolling conditions are calculated and used to explain the change rule of lubrication characteristics.The developed scheme is able to determine the total pressure,lubricant pressure,film thickness and real contact area at any point within the work zone.The prediction and analysis of mixed lubrication characteristics at the interface is meaningful to better control the surface quality and optimize the rolling process.
文摘Since the CPU of embed system has some limitation in operating speed, a new filter was put forward which implemented mountain template convolution by performing rectangle template convolution two times. It can obtain time and frequency localization with computational complexity greatly reduced. This algorithm was applied to lightning waveforms (include chopped waveforms) parameter calculation. It simplifies the computation and the results pretreated by this algorithm are in accord with IEC1083-2 completely. It was applied in embed system successfully. Its capability in frequency restraining was researched. The validity of the algorithm was proved in theory when processing lightning waves. The standard sources and the processing results are consistent completely.
基金Project(2002CB412707) supported by the National Basic Research Program of ChinaProject(2006BAG04B05) supported by the National Science and Technology Pillar Program during the 11th Five-Year Plan of ChinaProject(2010B14414) supported by the Scientific Research Program of Center University in China
文摘In order to realize information construction on settlement of pile-group foundation of Sutong Bridge, the monitoring instruments of high-precision micro-pressure sensor and hydrostatic leveling and settlement profiler were integrated synthetically. A set of practical multi-scale monitoring system on settlement of super-large pile-group foundation in deep water was put forward. The reliable settlement results are obtained by means of multi-sensor data fusion. Finite element model of pile-group foundation is established. By analysis of finite element simulated calculation of pile-group foundation, rules of settlement and uneven settlement obtained by monitoring and calculation results are coincident and the absolute error of settlement between them is 4.7 mm. The research shows that it is reasonable and feasible to monitor settlement of pile-group foundation with the system, and it can provide a method for the same type pile-group foundation in deep water.
基金supported by the program for the OIT of Higher Learning Institutions of Shanxi,the National Natural Science Foundation of China(Grant Nos.11302143 and 11472185)the Natural Science Foundation of Shanxi(Grant No.2014021013)
文摘It has been suggested that microcracks do play a key role in the triggering of the bone remodeling process.In order to evaluate the influence of microcracks on the poroelastic behaviors of an osteon,a finite element model is established and investigated by using the Comsol Multiphysics software.The findings show that the presence of a microcrack in the osteon wall strongly modifies(enlarges)its local fluid pressure and velocity.Especially,the pressure and velocity amplitudes produced in the microcracked region are larger than those of the non-cracked region.Thus,this study can also be used for proposing a likely mechanism that bone can sense the changes of surrounding mechanical environments.
基金supported by the National Natural Science Foundation of China(Grant No.11032008)the Youth Fund of Taiyuan University of Technology
文摘Micropipette aspiration(MA) is widely applied in cell mechanics, however, at small deformations a common model corresponding to the MA is the half-space model wherein the finite cell size and cell compressibility are neglected. This study extends the half-space model by accounting for the influence of cell geometry and compressibility(sphere model). Using a finite element analysis of cell aspiration into a micropipette, an elastic approximation formula of the aspirated length was derived for the sphere model. The approximation formula includes the geometry parameter of the sphere model(ζ = R/a, R is the radius of the cell, and a is the inner radius of the micropipette) and the Poisson's ratio v of the cell. The results indicate that the parameter and Poisson's ratio v markedly affect the aspirated length, particularly for small and v. When ζ→∞ and v→0.5,the approximation formula tends to the analytical solution for the half-space model. In the incompressible case(v = 0.5), within the general experimental range(ζ varying from 2 to 4), the difference between the analytical solution and the approximate one is significant, and is up to 29% of the approximation solution when ζ= 2. Additionally, parametere was introduced to evaluate the error of elastic moduli between the half-space model and sphere model. Based on the approximation formula, the ζ thresholds, beyond which e becomes larger than 10% and 20%, were derived.