以模拟的城镇生活垃圾为底物,在发酵试验起始阶段向反应体系通入不同浓度氧气(0,5,10,20 m L O2/g VS),探究微氧处理对两相发酵联产氢气甲烷的影响。研究表明,通入5 m L O2/g VS的试验组获得了最高的氢气产量(72.23 m L/g VS),较未处理...以模拟的城镇生活垃圾为底物,在发酵试验起始阶段向反应体系通入不同浓度氧气(0,5,10,20 m L O2/g VS),探究微氧处理对两相发酵联产氢气甲烷的影响。研究表明,通入5 m L O2/g VS的试验组获得了最高的氢气产量(72.23 m L/g VS),较未处理组提高了45.51%;虽然通入5 m L O2/g VS的试验组也获得了最高的甲烷产量(380.35 m L/g VS),但相比其他试验组并无明显提高。从整体来看,通入5 m L O2/g VS的试验组获得了最高的VS降解率(75.66%)和最高的能量回收率(72.76%),较未处理组分别提高了5.70%和5.33%。试验表明,适量的微氧处理(5 m L O2/g VS)可以提高城镇生活垃圾两相发酵联产氢气甲烷的产能效果。展开更多
Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and pha...Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and phase constitues, roughness, contact angle and apatite induction of the alkali-treated coatings were studied and compared. Scanning electron microscope(SEM) was applied to observe the morphologies, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to detect the phase constitutes and chemical compositions, a surface topography profilometer was used to analyze the surface roughness, and contact angle was measured by liquid drop method. Alkali treatements result in the formation of Na2Ti6O13 and Na2Ti3O7 phase on the MAO coating, which leads to the increase of surface roughness and the decrease of contact angle. Experimental results showed that the apatite induction of the alkali-treated coatings was dependent on the applied alkali concentrations during treatments, and Na+concentration can promote the formation of apatite phase.展开更多
The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% CODcr, raise pH from 0.7 to 5.5. The CODcr r...The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% CODcr, raise pH from 0.7 to 5.5. The CODcr removal efficiency by biochemical process can be more than 80%. During a half year抯 operation, the whole system worked very stably and had good results, as proved by the fact that every quality indicator of effluent met the expected discharge stan-dards; which means that chitin wastewater can be treated by the technique of micro-electrolysis, contact oxidization.展开更多
Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ...Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.展开更多
Anodic coatings were prepared by micro-arc oxidation on AZ91HP magnesium alloys in a base solution containing 10 g/L NaOH and 12 g/L phytic acid with addition of 0-8 g/L sodium tungstate.The effects of sodium tungstat...Anodic coatings were prepared by micro-arc oxidation on AZ91HP magnesium alloys in a base solution containing 10 g/L NaOH and 12 g/L phytic acid with addition of 0-8 g/L sodium tungstate.The effects of sodium tungstate on the coating thickness, mass gain,surface morphology and corrosion resistance were studied by eddy current instrument,electronic scales,scanning electron microscope and immersion tester.With the addition of sodium tungstate,the electrolytic conductivity increases and the final voltage decreases.The sodium tungstate has a minor effect on the coating thickness,but lightens the coating color.With increasing sodium tungstate concentration,the size of micropores on the coatings is enlarged and the corrosion resistance of the anodized samples decreases.展开更多
Effect of ammonia at different concentrations on aerobic granular sludge and activated sludge was investigated in this study. Meanwhile, bacterial diversity variation and ammonia oxidizing bacterium (AOB) quantifica...Effect of ammonia at different concentrations on aerobic granular sludge and activated sludge was investigated in this study. Meanwhile, bacterial diversity variation and ammonia oxidizing bacterium (AOB) quantification within both kinds of sludge were monitored by terminal restriction fragment length polymorphism (T-RFLP) and real-time PCR (RT-PCR) technique, respectively. The results showed that the COD removal of both kinds of sludge changed slightly when the ammonia removal efficiency decreased gradually with the ammonia concentration increased from 100 mg L^-1 to 500 mg L^-1 Furthermore, activated sludge demonstrated higher ammonia removal ability than that of aerobic granular sludge (10%- 16%). As revealed by T-RFLP, activated sludge was of higher ammonia removal ability and more abounding bacterial diversity than that of aerobic granular sludge, suggesting that the bacterial diversity was probably relevant to the ammonia removal. The RT-PCR results indicated that the AOB population size of activated sludge and aerobic granular sludge were 2.80× 10^4-3.44× 10^4cells (g dried sludge)^-1 and 7.83×10^4-1.18×10^5cells (g dried sludge)^-1, respectively. There is no obvious positive correlation between the ammonia removal ability and number of AOB in both kinds of sludge.展开更多
The term "extreme environments" describes the conditions that deviate from what mesophilic cells can tolerate. These condi- tions are "extreme" in the eye of mankind, but they may be suitable or even essential liv...The term "extreme environments" describes the conditions that deviate from what mesophilic cells can tolerate. These condi- tions are "extreme" in the eye of mankind, but they may be suitable or even essential living conditions for most microorgan- isms. Hypertherrnophilic microorganisms form a branch at the root of the phylogenetic tree, indicating that early life originated from extreme environments similar to that of modern deep-sea hydrothermal vents, which are characterized by high-tempera- ture and oxygen-limiting conditions. During the inevitable cooling and gradual oxidation process on Earth, microorganisms developed similar mechanisms of adaptation. By studying modem extremophiles, we may be able to decode the mysterious history of their genomic evolution and to reconstruct e~,rly life. Because life itself is a process of energy uptake to maintain a dissipative structure that is not in thermodynamic equilibrium, the energy metabolism of microorganisms determines the path- way of evolution, the structure of an ecosystem, and the physiology of cells. "Following energy" is an essential approach to understand the boundaries of life and to search for life beyond Earth.展开更多
文摘以模拟的城镇生活垃圾为底物,在发酵试验起始阶段向反应体系通入不同浓度氧气(0,5,10,20 m L O2/g VS),探究微氧处理对两相发酵联产氢气甲烷的影响。研究表明,通入5 m L O2/g VS的试验组获得了最高的氢气产量(72.23 m L/g VS),较未处理组提高了45.51%;虽然通入5 m L O2/g VS的试验组也获得了最高的甲烷产量(380.35 m L/g VS),但相比其他试验组并无明显提高。从整体来看,通入5 m L O2/g VS的试验组获得了最高的VS降解率(75.66%)和最高的能量回收率(72.76%),较未处理组分别提高了5.70%和5.33%。试验表明,适量的微氧处理(5 m L O2/g VS)可以提高城镇生活垃圾两相发酵联产氢气甲烷的产能效果。
基金Projects(51172050,51102060,51302050)supported by the National Natural Science Foundation of ChinaProject(HIT.ICRST.2010009)supported by the Fundamental Research Funds for Central Universities,ChinaProject(HIT.NSRIF.2014129)supported by the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China
文摘Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and phase constitues, roughness, contact angle and apatite induction of the alkali-treated coatings were studied and compared. Scanning electron microscope(SEM) was applied to observe the morphologies, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to detect the phase constitutes and chemical compositions, a surface topography profilometer was used to analyze the surface roughness, and contact angle was measured by liquid drop method. Alkali treatements result in the formation of Na2Ti6O13 and Na2Ti3O7 phase on the MAO coating, which leads to the increase of surface roughness and the decrease of contact angle. Experimental results showed that the apatite induction of the alkali-treated coatings was dependent on the applied alkali concentrations during treatments, and Na+concentration can promote the formation of apatite phase.
文摘The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% CODcr, raise pH from 0.7 to 5.5. The CODcr removal efficiency by biochemical process can be more than 80%. During a half year抯 operation, the whole system worked very stably and had good results, as proved by the fact that every quality indicator of effluent met the expected discharge stan-dards; which means that chitin wastewater can be treated by the technique of micro-electrolysis, contact oxidization.
文摘Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.
基金Projects(GJJ08363,GJJ09573)supported by the Scientific Research Fund of Jiangxi Provincial Education Department,China
文摘Anodic coatings were prepared by micro-arc oxidation on AZ91HP magnesium alloys in a base solution containing 10 g/L NaOH and 12 g/L phytic acid with addition of 0-8 g/L sodium tungstate.The effects of sodium tungstate on the coating thickness, mass gain,surface morphology and corrosion resistance were studied by eddy current instrument,electronic scales,scanning electron microscope and immersion tester.With the addition of sodium tungstate,the electrolytic conductivity increases and the final voltage decreases.The sodium tungstate has a minor effect on the coating thickness,but lightens the coating color.With increasing sodium tungstate concentration,the size of micropores on the coatings is enlarged and the corrosion resistance of the anodized samples decreases.
基金Acknowledge: The study are supported by the Natural Science Foundation of Jiangsu Province (No. BK2005402) and National Natural Science Foundation (No. 30640018).
文摘Effect of ammonia at different concentrations on aerobic granular sludge and activated sludge was investigated in this study. Meanwhile, bacterial diversity variation and ammonia oxidizing bacterium (AOB) quantification within both kinds of sludge were monitored by terminal restriction fragment length polymorphism (T-RFLP) and real-time PCR (RT-PCR) technique, respectively. The results showed that the COD removal of both kinds of sludge changed slightly when the ammonia removal efficiency decreased gradually with the ammonia concentration increased from 100 mg L^-1 to 500 mg L^-1 Furthermore, activated sludge demonstrated higher ammonia removal ability than that of aerobic granular sludge (10%- 16%). As revealed by T-RFLP, activated sludge was of higher ammonia removal ability and more abounding bacterial diversity than that of aerobic granular sludge, suggesting that the bacterial diversity was probably relevant to the ammonia removal. The RT-PCR results indicated that the AOB population size of activated sludge and aerobic granular sludge were 2.80× 10^4-3.44× 10^4cells (g dried sludge)^-1 and 7.83×10^4-1.18×10^5cells (g dried sludge)^-1, respectively. There is no obvious positive correlation between the ammonia removal ability and number of AOB in both kinds of sludge.
基金supported by National Natural Science Foundation of China (Grant No. 31290232)National High-Tech Program (Grant No. 2012AA092103-2)National Basic Research Program of China (Grant No. 2011CB808800)
文摘The term "extreme environments" describes the conditions that deviate from what mesophilic cells can tolerate. These condi- tions are "extreme" in the eye of mankind, but they may be suitable or even essential living conditions for most microorgan- isms. Hypertherrnophilic microorganisms form a branch at the root of the phylogenetic tree, indicating that early life originated from extreme environments similar to that of modern deep-sea hydrothermal vents, which are characterized by high-tempera- ture and oxygen-limiting conditions. During the inevitable cooling and gradual oxidation process on Earth, microorganisms developed similar mechanisms of adaptation. By studying modem extremophiles, we may be able to decode the mysterious history of their genomic evolution and to reconstruct e~,rly life. Because life itself is a process of energy uptake to maintain a dissipative structure that is not in thermodynamic equilibrium, the energy metabolism of microorganisms determines the path- way of evolution, the structure of an ecosystem, and the physiology of cells. "Following energy" is an essential approach to understand the boundaries of life and to search for life beyond Earth.