Patients who are chronically infected with the hepatitis C virus often develop chronic liver disease and assessment of the severity of liver injury is required prior to considering viral eradication therapy. This arti...Patients who are chronically infected with the hepatitis C virus often develop chronic liver disease and assessment of the severity of liver injury is required prior to considering viral eradication therapy. This article examines the various assessment methods currently available from gold standard liver biopsy to serological markers and imaging. Ultrasound is one of the most widely used imaging modalities in clinical practice and is already a first-line diagnostic tool for liver disease. Microbubble ultrasound contrast agents allow higher resolution images to be obtained and functional assessments of microvascular change to be carried out. The role of these agents in quantifying the state of hepatic injury is discussed as a viable method of determining the stage and grade of liver disease in patients with hepatitis C. Although currently confined to specialist centres, the availability of microbubble contrast-enhanced ultrasound will inevitably increase in the clinical setting.展开更多
Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-...Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-repellent wall), air injection, and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships. Micro-bubble injection is a promising technique for lowering frictional resistance. The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction. The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions: L=2 450 ram, B=400 mm, and T=190 mm. The influence of the location of micro bubble injection and bubble velocity was also investigated. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was precisely measured by a load cell transducer. Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number. It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction, and the drag reduction caused by the micro-bubbles can reach 6%-9%.展开更多
An implicit solvent coarse-grained (CG) lipid model using three beads to reflect the basically molecular structure of two-tailed lipid is developed. In this model, the nonbonded interaction employs a variant MIE pot...An implicit solvent coarse-grained (CG) lipid model using three beads to reflect the basically molecular structure of two-tailed lipid is developed. In this model, the nonbonded interaction employs a variant MIE potential and the bonded interaction utilizes a Harmonic potential form. The CG force field parameters are achieved by matching the structural and mechan-ical properties of dipalmitoylphosphatidylcholine (DPPC) bilayers. The model successfully reproduces the formation of lipid bilayer from a random initial state and the spontaneous vesiculation of lipid bilayer from a disk-like structure. After that, the model is used to sys-tematically study the vesiculation processes of spherical and cylindrical lipid droplets. The results show that the present CG model can effectively simulate the formation and evolution of mesoscale complex vesicles.展开更多
The Cyclonic-Static Microbubble Flotation Column (FCSMC) is currently a widely used, novel type of flotation device. The self-absorbing microbubble generator is the core component of this device. The structure of the ...The Cyclonic-Static Microbubble Flotation Column (FCSMC) is currently a widely used, novel type of flotation device. The self-absorbing microbubble generator is the core component of this device. The structure of the microbubble generator directly influences flotation column performance by affecting bubble size and distribution as well as gas holdup in the column. However, the complicated flow inside the generator results in high R&D costs and difficulty in testing. Thus, the CFD software, FLUENT, was used to simulate the gas-liquid two-phase flow inside a self-absorbing microbubble generator. The effect of area ratio, a key structural parameter, was studied in detail. Critical flow-field parameters including velocity, turbulent kinetic energy, minimum static pressure and gas holdup were obtained. The simulation results demonstrate that the optimum area ratio is 3.展开更多
基金the United Kingdom Department of Health, British Medical Research Council, Grant No. G99000178 and the United Kingdom National Health Service Research and Development Initiative
文摘Patients who are chronically infected with the hepatitis C virus often develop chronic liver disease and assessment of the severity of liver injury is required prior to considering viral eradication therapy. This article examines the various assessment methods currently available from gold standard liver biopsy to serological markers and imaging. Ultrasound is one of the most widely used imaging modalities in clinical practice and is already a first-line diagnostic tool for liver disease. Microbubble ultrasound contrast agents allow higher resolution images to be obtained and functional assessments of microvascular change to be carried out. The role of these agents in quantifying the state of hepatic injury is discussed as a viable method of determining the stage and grade of liver disease in patients with hepatitis C. Although currently confined to specialist centres, the availability of microbubble contrast-enhanced ultrasound will inevitably increase in the clinical setting.
基金Supported by the Directorate for Research and Community Service,University of Indonesia(RUUI Research Laboratory 2010),Jakarta,Indonesia
文摘Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-repellent wall), air injection, and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships. Micro-bubble injection is a promising technique for lowering frictional resistance. The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction. The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions: L=2 450 ram, B=400 mm, and T=190 mm. The influence of the location of micro bubble injection and bubble velocity was also investigated. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was precisely measured by a load cell transducer. Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number. It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction, and the drag reduction caused by the micro-bubbles can reach 6%-9%.
基金We thank Professor Dr. Markus Deserno (Department of Physics, Carnegie Mellon University), Jemal Guven (Institute of Nuclear Science, Universidad Nacional Autonoma de Mexico), and Zhan-chun Tu (Department of Physics, Beijing Normal University) for their valuable advice. This work is supported by the National Natural Science Foundation of China (No.20974078, No.21274107, and No.91127046). The computation and simulation are partly carried out in High Performance Computing Center of Tianjin University.
文摘An implicit solvent coarse-grained (CG) lipid model using three beads to reflect the basically molecular structure of two-tailed lipid is developed. In this model, the nonbonded interaction employs a variant MIE potential and the bonded interaction utilizes a Harmonic potential form. The CG force field parameters are achieved by matching the structural and mechan-ical properties of dipalmitoylphosphatidylcholine (DPPC) bilayers. The model successfully reproduces the formation of lipid bilayer from a random initial state and the spontaneous vesiculation of lipid bilayer from a disk-like structure. After that, the model is used to sys-tematically study the vesiculation processes of spherical and cylindrical lipid droplets. The results show that the present CG model can effectively simulate the formation and evolution of mesoscale complex vesicles.
基金Financial supports for this work provided by the National High Technology Research and Development Program of China (No.2008BAB31B02) is gratefully acknowledged
文摘The Cyclonic-Static Microbubble Flotation Column (FCSMC) is currently a widely used, novel type of flotation device. The self-absorbing microbubble generator is the core component of this device. The structure of the microbubble generator directly influences flotation column performance by affecting bubble size and distribution as well as gas holdup in the column. However, the complicated flow inside the generator results in high R&D costs and difficulty in testing. Thus, the CFD software, FLUENT, was used to simulate the gas-liquid two-phase flow inside a self-absorbing microbubble generator. The effect of area ratio, a key structural parameter, was studied in detail. Critical flow-field parameters including velocity, turbulent kinetic energy, minimum static pressure and gas holdup were obtained. The simulation results demonstrate that the optimum area ratio is 3.