期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
太阳微波双峰事件的初步分析
1
作者 许富英 吴洪敖 《空间科学学报》 CAS CSCD 北大核心 1999年第2期97-101,共5页
本文对1989年1月—1990年6月期间的11个微波双峰事件进行了初步的分析,发现大部分双峰事件的两个峰随频率的演化呈现出竟争的趋势.这一观测特征,可由不同的非热电子分布、或相同非热电子分布,但在相同频率上不同光厚导... 本文对1989年1月—1990年6月期间的11个微波双峰事件进行了初步的分析,发现大部分双峰事件的两个峰随频率的演化呈现出竟争的趋势.这一观测特征,可由不同的非热电子分布、或相同非热电子分布,但在相同频率上不同光厚导致谱相交特征得到合理的解释,井可得到双峰事件中两个峰产生在不同源区的推论. 展开更多
关键词 太阳耀斑 微波事件 双峰结构 观测
下载PDF
太阳微波脉冲事件的时变特性
2
作者 许富英 吴洪敖 《空间科学学报》 CAS CSCD 北大核心 1998年第3期279-283,共5页
本文利用瑞士Berne大学1988年1月-1989年12月发布的15个太阳微波脉冲事件的观测资料,分析其时间轮廓的3个主要特征:脉冲度、不对称性和半功率宽度频率响应.这些特性,可以定性地用非热电子的连续注入模,和不均匀的源模型给出较合理... 本文利用瑞士Berne大学1988年1月-1989年12月发布的15个太阳微波脉冲事件的观测资料,分析其时间轮廓的3个主要特征:脉冲度、不对称性和半功率宽度频率响应.这些特性,可以定性地用非热电子的连续注入模,和不均匀的源模型给出较合理的解释. 展开更多
关键词 太阳 微波脉冲事件 时变特性 太阳活动
下载PDF
Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform 被引量:21
3
作者 DONG Long-jun TANG Zheng +2 位作者 LI Xi-bing CHEN Yong-chao XUE Jin-chun 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3078-3089,共12页
Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic ev... Microseismic monitoring system is one of the effective methods for deep mining geo-stress monitoring.The principle of microseismic monitoring system is to analyze the mechanical parameters contained in microseismic events for providing accurate information of rockmass.The accurate identification of microseismic events and blasts determines the timeliness and accuracy of early warning of microseismic monitoring technology.An image identification model based on Convolutional Neural Network(CNN)is established in this paper for the seismic waveforms of microseismic events and blasts.Firstly,the training set,test set,and validation set are collected,which are composed of 5250,1500,and 750 seismic waveforms of microseismic events and blasts,respectively.The classified data sets are preprocessed and input into the constructed CNN in CPU mode for training.Results show that the accuracies of microseismic events and blasts are 99.46%and 99.33%in the test set,respectively.The accuracies of microseismic events and blasts are 100%and 98.13%in the validation set,respectively.The proposed method gives superior performance when compared with existed methods.The accuracies of models using logistic regression and artificial neural network(ANN)based on the same data set are 54.43%and 67.9%in the test set,respectively.Then,the ROC curves of the three models are obtained and compared,which show that the CNN gives an absolute advantage in this classification model when the original seismic waveform are used in training the model.It not only decreases the influence of individual differences in experience,but also removes the errors induced by source and waveform parameters.It is proved that the established discriminant method improves the efficiency and accuracy of microseismic data processing for monitoring rock instability and seismicity. 展开更多
关键词 microseismic monitoring waveform classification microseismic events BLASTS convolutional neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部