鉴于酒钢-1 mm镜铁矿粉矿采用常规选矿方法难以获得好的分选指标,进行常规磁化焙烧—弱磁选又需解决球团问题,以哈密烟煤为还原剂,对该粉矿开展了微波磁化焙烧—弱磁选研究,考察了煤粉用量、微波功率、焙烧温度、焙烧时间、焙烧产品磨...鉴于酒钢-1 mm镜铁矿粉矿采用常规选矿方法难以获得好的分选指标,进行常规磁化焙烧—弱磁选又需解决球团问题,以哈密烟煤为还原剂,对该粉矿开展了微波磁化焙烧—弱磁选研究,考察了煤粉用量、微波功率、焙烧温度、焙烧时间、焙烧产品磨矿细度和弱磁选磁场强度对所获铁精矿指标的影响。试验结果表明,在煤粉与矿石的质量比为5%、微波功率为1 k W、焙烧温度为550℃条件下将该粉矿微波磁化焙烧15 min,然后将焙烧矿磨细至-0.074 mm占85.65%,在92.16 k A/m磁场强度下进行1次磁选管选别,可获得铁精矿铁品位为55.10%、铁回收率为86.65%的较好指标,从而为该-1 mm镜铁矿粉矿中铁矿物的高效回收提供了一种新思路。展开更多
Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roa...Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roasting technology was proposed to recover and utilize the ore.The results showed that under the conditions of microwave pretreatment temperature of 1050℃ for 2 min,a magnetic concentrate with an iron grade of 58.72%at a recovery of 89.32%was obtained by microwave suspension magnetization roasting and magnetic separation.Moreover,compared with the no microwave pretreatment case,the iron grade and recovery increased by 3.17%and 1.58%,respectively.Microwave pretreatment increased the saturation magnetization of the roasted products from 24.974 to 39.236(A∙m^(2))/kg and the saturation susceptibility from 0.179×10^(−3) m^(3)/kg to 0.283×10^(−3) m^(3)/kg.Microcracks were formed between the iron and gangue minerals,and they gradually extended to the core of oolite with the increase in the pretreatment time.The reducing gas diffused from outside to inside along the microcracks,which promoted the selective transformation of the weak magnetic hematite into the strong magnetic magnetite.展开更多
文摘鉴于酒钢-1 mm镜铁矿粉矿采用常规选矿方法难以获得好的分选指标,进行常规磁化焙烧—弱磁选又需解决球团问题,以哈密烟煤为还原剂,对该粉矿开展了微波磁化焙烧—弱磁选研究,考察了煤粉用量、微波功率、焙烧温度、焙烧时间、焙烧产品磨矿细度和弱磁选磁场强度对所获铁精矿指标的影响。试验结果表明,在煤粉与矿石的质量比为5%、微波功率为1 k W、焙烧温度为550℃条件下将该粉矿微波磁化焙烧15 min,然后将焙烧矿磨细至-0.074 mm占85.65%,在92.16 k A/m磁场强度下进行1次磁选管选别,可获得铁精矿铁品位为55.10%、铁回收率为86.65%的较好指标,从而为该-1 mm镜铁矿粉矿中铁矿物的高效回收提供了一种新思路。
基金Projects(51874071,51734005,52104257)supported by the National Natural Science Foundation of ChinaProject(161045)supported by the Fok Ying Tung Education Foundation for Yong Teachers in the Higher Education Institutions of China。
文摘Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roasting technology was proposed to recover and utilize the ore.The results showed that under the conditions of microwave pretreatment temperature of 1050℃ for 2 min,a magnetic concentrate with an iron grade of 58.72%at a recovery of 89.32%was obtained by microwave suspension magnetization roasting and magnetic separation.Moreover,compared with the no microwave pretreatment case,the iron grade and recovery increased by 3.17%and 1.58%,respectively.Microwave pretreatment increased the saturation magnetization of the roasted products from 24.974 to 39.236(A∙m^(2))/kg and the saturation susceptibility from 0.179×10^(−3) m^(3)/kg to 0.283×10^(−3) m^(3)/kg.Microcracks were formed between the iron and gangue minerals,and they gradually extended to the core of oolite with the increase in the pretreatment time.The reducing gas diffused from outside to inside along the microcracks,which promoted the selective transformation of the weak magnetic hematite into the strong magnetic magnetite.