An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wi...An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wide frequency range due to the RC network. The power characteristics of the device as measured by a loadpull system show that the large-signal performance of the power transistor is affected slightly by the RC network. Psat is 30dBm at 5.4GHz,and PldB is larger than 21.6dBm at llGHz. The stability of the device due to RC network is proved by a power combination circuit. This makes the power transistor very suitable for applications in microwavc high power ttBT amplifiers.展开更多
The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper w...The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper we employ the proposed modified extended mapping method for constructing the exact solitary wave and soliton solutions of coupled Klein-Gordon equations and the (2-1-1)-dimensional cubic Klein-Gordon (K-G) equation. The Klein-Gordon equations are relativistic version of Schr6dinger equations, which describe the relation of relativistic energy-momentum in the form of quantized version. We productively achieve exact solutions involving parameters such as dark and bright solitary waves, Kink solitary wave, anti-Kink solitary wave, periodic solitary waves, and hyperbolic functions in which several solutions are novel. We plot the three-dimensional surface of some obtained solutions in this study. It is recognized that the modified mapping technique presents a more prestigious mathematical tool for acquiring analytical solutions of PDEs arise in mathematical physics.展开更多
文摘An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wide frequency range due to the RC network. The power characteristics of the device as measured by a loadpull system show that the large-signal performance of the power transistor is affected slightly by the RC network. Psat is 30dBm at 5.4GHz,and PldB is larger than 21.6dBm at llGHz. The stability of the device due to RC network is proved by a power combination circuit. This makes the power transistor very suitable for applications in microwavc high power ttBT amplifiers.
文摘The searching exact solutions in the solitary wave form of non-linear partial differential equations (PDEs) play a significant role to understand the internal mechanism of complex physical phenomena. In this paper we employ the proposed modified extended mapping method for constructing the exact solitary wave and soliton solutions of coupled Klein-Gordon equations and the (2-1-1)-dimensional cubic Klein-Gordon (K-G) equation. The Klein-Gordon equations are relativistic version of Schr6dinger equations, which describe the relation of relativistic energy-momentum in the form of quantized version. We productively achieve exact solutions involving parameters such as dark and bright solitary waves, Kink solitary wave, anti-Kink solitary wave, periodic solitary waves, and hyperbolic functions in which several solutions are novel. We plot the three-dimensional surface of some obtained solutions in this study. It is recognized that the modified mapping technique presents a more prestigious mathematical tool for acquiring analytical solutions of PDEs arise in mathematical physics.