Microreaction technology is one of the most innovative and rapid developing fields in chemical engineering, synthesis and process technology. Many expectations toward enhanced product selectivity, yield and purity, im...Microreaction technology is one of the most innovative and rapid developing fields in chemical engineering, synthesis and process technology. Many expectations toward enhanced product selectivity, yield and purity, improved safety, and access to new products and processes are directed to the microreaction technology. Microfluidic mixer is the most important component in microfluidic devices. Based on various principles, active and passive micromixers have been designed and investigated. This review is focused on the recent developments in microfluidic mixers. An overview of the flow phenomena and mixing characteristics in active and passive micromixers is presented, including the types of physical phenomena and their utilization in micromixers. Due to the simple fabrication technology and the easy implementation in a complex microfluidic system, T-micromixer is highlighted as an example to illustrate the effect of design and operating parameters on mixing efficiency and fuid flow inside microfluidic mixers.展开更多
Micromixing in the submerged circulative impinging stream reactor (SCISR) developed by the authors is investigated with the Bourne's reaction scheme. The values measured for the impinging velocity, u0, under the ...Micromixing in the submerged circulative impinging stream reactor (SCISR) developed by the authors is investigated with the Bourne's reaction scheme. The values measured for the impinging velocity, u0, under the conditions of SCISR normal operation, only is of the order of 0.1m·s^-1, are much slower than that inferred,suggesting low power requirement for operation. The values of the characteristic time constant for micromixing,tM, determined in the impinging velocity range of 0.184m·s^-1 < u0 < 0.326m·s^-1 are ranged from 192ms to 87 ms, showing that impinging streams promotes micromixing very efficiently. The data follow approximately the relationship of tM∝ u0^-1.5. A comparative study shows that the micromixing performance of SCISR is much better than that of the traditional stirred tank reactor. The tM values predicted with the existing theoretical model are systematically longer than those measured by about 2--3 times, implying that the regularity of impinging streams promoting micromixing is unclear yet.展开更多
Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of i...Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of inner diameter of 3 mm was studied by using a parallel competing iodide–iodate reaction as the working system.In this work,the effects of different operating conditions,such as impinging velocity and acid concentration,on segregation index were investigated.In addition,the effects of the inner nozzles diameter and the distance L between the jet axis and the top wall of the mixing chamber on the micromixing efficiency were also considered.It is concluded that the best range of L in this CIJR is 6.5–12.5 mm.Based on the incorporation model,the estimated minimum micromixing time tmof CIJR approximately equals to 2×10-4s.These experimental results indicate clearly that CIJR possesses a much better micromixing performance compared with the conventional stirred tank(micromixing time of 2×10-3to 2×10-2s).Hence,it can be envisioned that CIJR has more promising applications in various industrial processes.展开更多
A CFD simulation was carried out to investigate the mixing process in a Y-shape micromixer with the software Fluent 6.3. The definition of the "diffusion angle" is proposed to describe the molecular diffusio...A CFD simulation was carried out to investigate the mixing process in a Y-shape micromixer with the software Fluent 6.3. The definition of the "diffusion angle" is proposed to describe the molecular diffusion process associated with the flow at low Reynolds number. The linear relationship between the diffusion angle and the Peclet number(Pe) is determined by both theoretical analysis and numerical simulation. Moreover, the simulation results reveal that the diffusion angle is only related to the Peclet number whilst it is irrelevant to the changes of Re(Reynolds number) and Sc(Schmidt number). The range of Peclet number and Reynolds number for experimental measurement are also suggested as Pe≤10000 and Re≤10.展开更多
Microstructure and hydrological profiles were collected along two cross-shelf sections from the deep slope to the shallow water in the north of Taiwan Island in the summer of 2006.While the tidal currents on the shelf...Microstructure and hydrological profiles were collected along two cross-shelf sections from the deep slope to the shallow water in the north of Taiwan Island in the summer of 2006.While the tidal currents on the shelf were dominated by the barotropic tide with the current ellipse stretched across the shelf,significant internal tides were observed on the slope.The depth-mean turbulent kinetic energy(TKE)dissipation rate on the shelf was 10^-6W kg^-1,corresponding to a diapycnal diffusivity of 10^-2 m^2s^-1.The depth-mean TKE dissipation rate on the slope was 1×10^-7 Wkg^-1,with diapycnal diffusivity of 3×10^-4m^2s^-1.The shear instability associated with internal tides largely contributed to the TKE dissipation rate on the slope from the surface to 150 m,while the enhanced turbulence on the shelf was dominated by tidal or residual current dissipations caused by friction in the thick bottom boundary layer(BBL).In the BBL,the Ekman currents associated with the northeastward Taiwan Warm Current were identified,showing a near-bottom velocity spiral,which agreed well with the analytical bottom Ekman solution.展开更多
Mixing problems are most likely encountered and sometimes can be severe in scaling-up projects. Micro-mixing is an important aspect for fast or quasi-instantaneous reactions. Poor micro-mixing might produce more undes...Mixing problems are most likely encountered and sometimes can be severe in scaling-up projects. Micro-mixing is an important aspect for fast or quasi-instantaneous reactions. Poor micro-mixing might produce more undesired by-products, leading to higher purification costs. This paper gives an extensive review and analysis of micro-mixing studies in single- and multi phase stirred tanks. The relevant experiment techniques, micro-mixing models and nurherical approaches are critically reviewed and analyzed with remarks and perspectives. The reported studies on two-phase micro-mixing experiments and on the impact of the presence of the dispersed phases on turbulence have been limited to a narrow range of conditions. More importantly, disparities widely exist among different reports. Both Lagrangian and Eulerian models are based on oversimplified assumptions, which may lead to uncertainties or even unrealistic results. A heuristic model, which is from the perspective of CFD (computational fluid dynamics) and can cover the whole spectrum of scales and also focus on every subrocess, is desired in the future.展开更多
When the temperature of a thin layer of a solution is vertically controlled, Rayleigh-Bemard convection is observed. When a binary isobutyric acid aqueous solution is used as the binary mixture, phase separation is si...When the temperature of a thin layer of a solution is vertically controlled, Rayleigh-Bemard convection is observed. When a binary isobutyric acid aqueous solution is used as the binary mixture, phase separation is simultaneously induced at the approximate critical solution temperature. In this study, these behaviors of phase separation and convection were observed under microwave irradiation. When the microwave power was higher, coalescence of fine droplets after the initial phase separation was accelerated and the coalescence size decreased. However, the solution became more unsteady because of smaller interfacial tension or greater heat generated by the radiation. Finally, in cases of higher microwave power, a steady convection pattern could not exist for a prolonged period because the water-rich phase was more active toward microwave irradiation, and the vertical temperature gradient became disordered.展开更多
In this work,a rotary pump based micromixer for on-chip rapid mixing and liquid transportation is demonstrated and characterized.Both pumping and mixing are realized using a microfluidic chip with a single structural ...In this work,a rotary pump based micromixer for on-chip rapid mixing and liquid transportation is demonstrated and characterized.Both pumping and mixing are realized using a microfluidic chip with a single structural polydimethylsiloxane layer and a portable electric control system.The rotary pump consists of an annular channel and is driven by a motor and magnets.The flow field caused by the peristaltic movement of the channel membrane of the rotary pump is simulated and analyzed.By statistically calculating and comparing the normalized standard deviations of the flow velocity components in a microchannel,it is revealed that up-and-down mixing is the fastest,followed by segment mixing and parallel mixing.Two mixing styles,segment mixing and parallel mixing,were experimentally demonstrated using the chip.The pump achieved 90% of the mixing index in 1 s for the segment mixing type.As for the parallel mixing type,the mixing index was up to 90% after 5 s,which is more than 100-fold improvement compared to conventional mixing by interfacial diffusion.The mixing speeds in both directions were improved prominently by increasing the rotational speed of the pump.展开更多
The aim of this paper is to present a continuum model for bioconvection of oxytactic micro-organisms in a non-Darcy porous medium and to investigate the effects of bio- convection and mixed convection on the steady bo...The aim of this paper is to present a continuum model for bioconvection of oxytactic micro-organisms in a non-Darcy porous medium and to investigate the effects of bio- convection and mixed convection on the steady boundary layer flow past a horizontal plate embedded in a porous medium filled with a water-based nanofluid. The governing partial differential equations for momentum, heat, oxygen and micro-organism conser- vation are reduced to a set of nonlinear ordinary differential equations using similarity transformations that are numerically solved using a built-in MATLAB ODE solver. The effects of the bioconvection parameters on the nanofluid fluid properties, nanoparticle concentration and the density of the micro-organism are analyzed. A comparative anal- ysis of our results with those previously reported in the literature is given. Among the significant findings in this study is that bioconvection parameters highly influence beat, mass and motile micro-organism transfer rates.展开更多
基金supported by the National Natural Science Foundation of China(20733001,20973015)National Key Basic Research Program of China(973)(2006CB910300,2010CB912302)~~
基金the National High Technology Research and Development Program of China(2006AA030202,2006AA05Z316)
文摘Microreaction technology is one of the most innovative and rapid developing fields in chemical engineering, synthesis and process technology. Many expectations toward enhanced product selectivity, yield and purity, improved safety, and access to new products and processes are directed to the microreaction technology. Microfluidic mixer is the most important component in microfluidic devices. Based on various principles, active and passive micromixers have been designed and investigated. This review is focused on the recent developments in microfluidic mixers. An overview of the flow phenomena and mixing characteristics in active and passive micromixers is presented, including the types of physical phenomena and their utilization in micromixers. Due to the simple fabrication technology and the easy implementation in a complex microfluidic system, T-micromixer is highlighted as an example to illustrate the effect of design and operating parameters on mixing efficiency and fuid flow inside microfluidic mixers.
基金Supported by the National Natural Science Foundation of China (No. 29276260, No. 20176043).
文摘Micromixing in the submerged circulative impinging stream reactor (SCISR) developed by the authors is investigated with the Bourne's reaction scheme. The values measured for the impinging velocity, u0, under the conditions of SCISR normal operation, only is of the order of 0.1m·s^-1, are much slower than that inferred,suggesting low power requirement for operation. The values of the characteristic time constant for micromixing,tM, determined in the impinging velocity range of 0.184m·s^-1 < u0 < 0.326m·s^-1 are ranged from 192ms to 87 ms, showing that impinging streams promotes micromixing very efficiently. The data follow approximately the relationship of tM∝ u0^-1.5. A comparative study shows that the micromixing performance of SCISR is much better than that of the traditional stirred tank reactor. The tM values predicted with the existing theoretical model are systematically longer than those measured by about 2--3 times, implying that the regularity of impinging streams promoting micromixing is unclear yet.
基金Supported by the National Natural Science Foundation of China(21206002,21121064,20990224)the State Key Laboratory of Chemical Engineering(SKL-Ch E-13A03)
文摘Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of inner diameter of 3 mm was studied by using a parallel competing iodide–iodate reaction as the working system.In this work,the effects of different operating conditions,such as impinging velocity and acid concentration,on segregation index were investigated.In addition,the effects of the inner nozzles diameter and the distance L between the jet axis and the top wall of the mixing chamber on the micromixing efficiency were also considered.It is concluded that the best range of L in this CIJR is 6.5–12.5 mm.Based on the incorporation model,the estimated minimum micromixing time tmof CIJR approximately equals to 2×10-4s.These experimental results indicate clearly that CIJR possesses a much better micromixing performance compared with the conventional stirred tank(micromixing time of 2×10-3to 2×10-2s).Hence,it can be envisioned that CIJR has more promising applications in various industrial processes.
基金Project(51106184)supported by the National Natural Science Foundation of China
文摘A CFD simulation was carried out to investigate the mixing process in a Y-shape micromixer with the software Fluent 6.3. The definition of the "diffusion angle" is proposed to describe the molecular diffusion process associated with the flow at low Reynolds number. The linear relationship between the diffusion angle and the Peclet number(Pe) is determined by both theoretical analysis and numerical simulation. Moreover, the simulation results reveal that the diffusion angle is only related to the Peclet number whilst it is irrelevant to the changes of Re(Reynolds number) and Sc(Schmidt number). The range of Peclet number and Reynolds number for experimental measurement are also suggested as Pe≤10000 and Re≤10.
基金sponsored by the National Basic Research Program of China (Ministry of Science and Technology)granted by the National Natural Science Foundation of China (Grant Nos. 41306003 and 41430963)+2 种基金the Fundamental Research Funds for the Central Universities (Grant Nos. 0905-841313038, 1100841262028 and 0905-201462003)the China Postdoctoral Science Foundation (Grant No. 2013M531647)the Natural Science Foundation of Shandong (Grant No. BS2013HZ015)
文摘Microstructure and hydrological profiles were collected along two cross-shelf sections from the deep slope to the shallow water in the north of Taiwan Island in the summer of 2006.While the tidal currents on the shelf were dominated by the barotropic tide with the current ellipse stretched across the shelf,significant internal tides were observed on the slope.The depth-mean turbulent kinetic energy(TKE)dissipation rate on the shelf was 10^-6W kg^-1,corresponding to a diapycnal diffusivity of 10^-2 m^2s^-1.The depth-mean TKE dissipation rate on the slope was 1×10^-7 Wkg^-1,with diapycnal diffusivity of 3×10^-4m^2s^-1.The shear instability associated with internal tides largely contributed to the TKE dissipation rate on the slope from the surface to 150 m,while the enhanced turbulence on the shelf was dominated by tidal or residual current dissipations caused by friction in the thick bottom boundary layer(BBL).In the BBL,the Ekman currents associated with the northeastward Taiwan Warm Current were identified,showing a near-bottom velocity spiral,which agreed well with the analytical bottom Ekman solution.
基金Supported by the State Key Development Program for Basic Research of China (2010CB630904)the National Natural Science Fund for Distinguished Young Scholars (21025627)+2 种基金the National Natural Science Foundation of China (21106154,20990224)the National High Technology Research and Development Program of China (2011AA060704)the Beijing Natural Science Foundation (2112038) and Jiangsu Province Project (BY2009133)
文摘Mixing problems are most likely encountered and sometimes can be severe in scaling-up projects. Micro-mixing is an important aspect for fast or quasi-instantaneous reactions. Poor micro-mixing might produce more undesired by-products, leading to higher purification costs. This paper gives an extensive review and analysis of micro-mixing studies in single- and multi phase stirred tanks. The relevant experiment techniques, micro-mixing models and nurherical approaches are critically reviewed and analyzed with remarks and perspectives. The reported studies on two-phase micro-mixing experiments and on the impact of the presence of the dispersed phases on turbulence have been limited to a narrow range of conditions. More importantly, disparities widely exist among different reports. Both Lagrangian and Eulerian models are based on oversimplified assumptions, which may lead to uncertainties or even unrealistic results. A heuristic model, which is from the perspective of CFD (computational fluid dynamics) and can cover the whole spectrum of scales and also focus on every subrocess, is desired in the future.
文摘When the temperature of a thin layer of a solution is vertically controlled, Rayleigh-Bemard convection is observed. When a binary isobutyric acid aqueous solution is used as the binary mixture, phase separation is simultaneously induced at the approximate critical solution temperature. In this study, these behaviors of phase separation and convection were observed under microwave irradiation. When the microwave power was higher, coalescence of fine droplets after the initial phase separation was accelerated and the coalescence size decreased. However, the solution became more unsteady because of smaller interfacial tension or greater heat generated by the radiation. Finally, in cases of higher microwave power, a steady convection pattern could not exist for a prolonged period because the water-rich phase was more active toward microwave irradiation, and the vertical temperature gradient became disordered.
基金supported by the Major State Basic Research Development Program of China ((Grant No. 2007CB310504)the National Natural Science Foundation of China (Grant No. 50730009)
文摘In this work,a rotary pump based micromixer for on-chip rapid mixing and liquid transportation is demonstrated and characterized.Both pumping and mixing are realized using a microfluidic chip with a single structural polydimethylsiloxane layer and a portable electric control system.The rotary pump consists of an annular channel and is driven by a motor and magnets.The flow field caused by the peristaltic movement of the channel membrane of the rotary pump is simulated and analyzed.By statistically calculating and comparing the normalized standard deviations of the flow velocity components in a microchannel,it is revealed that up-and-down mixing is the fastest,followed by segment mixing and parallel mixing.Two mixing styles,segment mixing and parallel mixing,were experimentally demonstrated using the chip.The pump achieved 90% of the mixing index in 1 s for the segment mixing type.As for the parallel mixing type,the mixing index was up to 90% after 5 s,which is more than 100-fold improvement compared to conventional mixing by interfacial diffusion.The mixing speeds in both directions were improved prominently by increasing the rotational speed of the pump.
文摘The aim of this paper is to present a continuum model for bioconvection of oxytactic micro-organisms in a non-Darcy porous medium and to investigate the effects of bio- convection and mixed convection on the steady boundary layer flow past a horizontal plate embedded in a porous medium filled with a water-based nanofluid. The governing partial differential equations for momentum, heat, oxygen and micro-organism conser- vation are reduced to a set of nonlinear ordinary differential equations using similarity transformations that are numerically solved using a built-in MATLAB ODE solver. The effects of the bioconvection parameters on the nanofluid fluid properties, nanoparticle concentration and the density of the micro-organism are analyzed. A comparative anal- ysis of our results with those previously reported in the literature is given. Among the significant findings in this study is that bioconvection parameters highly influence beat, mass and motile micro-organism transfer rates.