Microzoopiankton community composition in the north of South China Sea was investigated during autumn (between September and October), 2004. Dilution technique using chlorophyll a (Chl a) was employed to estimate ...Microzoopiankton community composition in the north of South China Sea was investigated during autumn (between September and October), 2004. Dilution technique using chlorophyll a (Chl a) was employed to estimate grazing rates and grazing pressure. The results showed that Polymenophorea Oligotrichida was the dominant group with 16 species, and there were 4 species in Oligotrichina and 11 species in Tintinnina. The ciliates abundance ranged from 9 to 102 ind/m^3, instantaneous growth rates of phytoplankton (k) varied from 0.03 / d to 2.13 / d. Grazing rates of microzooplankton(g) ranged between 0.01 / d and 1.06 / d. The grazing pressure on initial phytoplankton stock (Pi) and primary production (Pp) was 0.089 % - 65.23 % and 33.63 % - 86.04 %, respectively. The grazing of microzooplankton was mainly limited by ciliates abundance. Results of grazing pressure on primary production indicated that microzooplankton played an improtant role in transmitting primary production in the north of South China Sea.展开更多
Responses of Prochlorococcus (Pro), Synechococcus (Syn), pico-eukaryotes (Euk) and heterotrophic bacteria (Bact) in pelagic marine ecosystems to external nutrient perturbations were examined using nitrogen- (N), phosp...Responses of Prochlorococcus (Pro), Synechococcus (Syn), pico-eukaryotes (Euk) and heterotrophic bacteria (Bact) in pelagic marine ecosystems to external nutrient perturbations were examined using nitrogen- (N), phosphorus- (P), iron- (Fe), and cobalt- (Co) enriched incubations in the South China Sea in November 1997. Variations in abundance of the 4 groups of microorganism and cellular pigment content of the autotrophs during incubation were followed by flow-cytometric measurements for seven days. During the incubation, Syn and Euk showed a relatively higher demand on Fe and N, while Pro required higher levels of Co and P. The Fe was inadequate for all the organisms in the deep euphotic zone (75 m) of the study area. The experimental results also implied that biological interaction among the organisms played a role in the community structure shift during the incubation. It seemed that besides the effects of temperature, there are some other physical and chemical limitations as well as impacts from biological interactions on Pro distribution in coast waters.展开更多
The species composition and abundance of microzooplankton at 10 marine and five coastal stations (Hongdao, Daguhe, Haibohe, Huangdao and Hangxiao) in the Jiaozhou Bay (Qingdao, China) were studied in 2001. The mic...The species composition and abundance of microzooplankton at 10 marine and five coastal stations (Hongdao, Daguhe, Haibohe, Huangdao and Hangxiao) in the Jiaozhou Bay (Qingdao, China) were studied in 2001. The microzooplankton community was found to be dominated by Tintinnopsis beroidea, Tintinnopsis urnula, Tintinnopsis brevicoUis and Codonellopsis sp. The average abundance of microzooplankton was highly variable among stations. Specifically, the abundance of microzooplankton was higher at inshore stations and lower in the center of the bay (St. 5), bay mouth (St. 9) and outside the bay (St. 10). The highest average annual densities (346 ind./L) was observed at St. 3, while the lowest (55 ind./L) was at St. 10. Two abundance peaks were recorded in May (324 ind./L) and February (300 ind./L). The distribution of microzooplankton in three sampling layers at the 10 stations was relatively homogenous and the abundance decreased slightly as the water depth increased. At coastal stations, the highest average annual density was recorded at Hongdao Station (677 ind./L), followed by Daguhe Station (616 ind./L), Haibohe Station (400 ind./L ), Huangdao Station (275 ind./L) and Hangxiao Station (73 ind./L). Furthermore, a 24-h sampling analysis conducted at Hangxiao Station revealed that the microzooplankton assemblages were characterized by a bimodal diel vertical migration pattem, with the highest densities occurring at dusk (154 ind./L), followed by dawn (146 ind./L), noon (93 ind./L) and midnight (77 ind./L). The density of microzooplankton in the Jiaozhou Bay was in the middle range of the densities of temperate coastal waters worldwide.展开更多
In order to understand the large-scale spatial distribution characteristics of picoplankton,nanophytoplankton and virio-plankton and their relationship with environmental variables in coastal and offshore waters,flow ...In order to understand the large-scale spatial distribution characteristics of picoplankton,nanophytoplankton and virio-plankton and their relationship with environmental variables in coastal and offshore waters,flow cytometry(FCM) was used to ana-lyze microbial abundance of samples collected in summer from four depths at 36 stations in the North Yellow Sea(NYS).The data revealed spatial heterogeneity in microbial populations in the offshore and near-shore waters of the NYS during the summer.For the surface layer,picoeukaryotes were abundant in the near-shore waters,Synechococcus was abundant in the offshore areas,and bacte-rial and viral abundances were high in the near-shore waters around the Liaodong peninsula.In the near-shore waters,no significant vertical variation of picophytoplankton(0.2-2μm) abundance was found.However,the nanophytoplankton abundance was higher in the upper layers(from the surface to 10 m depth) than in the bottom layer.For the offshore waters,both pico-and nanophytoplankton(2-20μm) abundance decreased sharply with depth in the North Yellow Sea Cold Water Mass(NYSCWM).But,for the vertical dis-tribution of virus and bacteria abundance,no significant variation was observed in both near-shore and offshore waters.Autotrophic microbes were more sensitive to environmental change than heterotrophic microbes and viruses.Viruses showed a positive correla-tion with bacterial abundance,suggesting that the bacteriophage might be prominent for virioplankton(about 0.45μm) in summer in the NYS and that viral abundance might play an important role in microbial loop functions.展开更多
The ciliate community in the Bohai Sea (China) was studied from 23 September to 7 October 1998. A hurricane struck the study area between the two grid station investigations, which were six days apart. Six tintinnid s...The ciliate community in the Bohai Sea (China) was studied from 23 September to 7 October 1998. A hurricane struck the study area between the two grid station investigations, which were six days apart. Six tintinnid species (Favella panamensis, Leptotintinnus nordqvisti, Tintinnopsis butschlii, T. karajacensis, T. Radix and Wangiella dicollaria) were identified. Total cililate abundance in the surface layer ranged from 20 to 770 ind/l. In the first grid investigation, Tintinnopsis karajacensis dominated in the warm, low salinity waters at the Huanghe River mouth. Aloricate ciliate sp.1 dominated in the cold, high salinity waters in the northwest of the study area and the Bohai Strait. In the second grid investigation, T. Karajacensis almost disappeared. The abundance of aloricate ciliate sp.1 decreased drastically. The aloricate ciliate sp.2 dominated at the Bohai Strait. The change of ciliate abundance may be due to the disturbance of hurricane.展开更多
The dinoflagellate Noctiluca scintillans is one of the most important and abundant red tide organisms and it is distributed world-wide. It occurs in two forms. Red Noctiluca is heterotrophic and fills the role of one ...The dinoflagellate Noctiluca scintillans is one of the most important and abundant red tide organisms and it is distributed world-wide. It occurs in two forms. Red Noctiluca is heterotrophic and fills the role of one of the microzooplankton grazers in the foodweb. In contrast, green Noctiluca contains a photosynthetic symbiont Pedinomonas noctilucae (a prasinophyte), but it also feeds on other plankton when the food supply is abundant. In this review, we document the global distribution of these two forms and include the first maps of their global distribution. Red Noctiluca occurs widely in the temperate to sub-tropical coastal regions of the world. It occurs over a wide temperature range of about 10℃ to 25℃ and at higher salinities (generally not in estuaries). It is particularly abundant in high productivity areas such as upwelling or eutrophic areas where diatoms dominate since they are its preferred food source. Green Noctiluca is much more restricted to a temperature range of 25℃-30℃ and mainly occurs in tropical waters of Southeast Asia, Bay of Bengal (east coast of India), in the eastern, western and northern Arabian Sea, the Red Sea, and recently it has become very abundant in the Gulf of Oman. Red and green Noctiluca do overlap in their distribution in the eastern, northern and western Arabian Sea with a seasonal shift from green Noctiluca in the cooler winter convective mixing, higher productivity season, to red Noctiluca in the more oligotrophic warmer summer season.展开更多
The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, ...The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, February-March 1998, and August 1998). The results show that picophytoplankton and nanophytoplankton dominate the phytoplankton biomass, in average of 38% and 40%, respectively. SYN and PEUK varied over time in abundance and carbon biomass, greater in summer than in winter, in range of (7.70–209.2)×106 and (0.75–15.4)×106 cells/cm2 in the abundance, and 1.93–52.3 and 1.57–32.4 μgC/cm2 in the carbon biomass, for SYN and PEUK, respectively. The horizontal distributions of both groups were diurnal but heterogeneous in abundance, depending on the groups and layer of depths. Temperature is the key controlling factor for picophytoplankton distribution (especially in winter) in the Strait.展开更多
A previously developed model was modified to derive three phytoplankton size classes (micro-, nano-, and pico-phytoplankton) from the overall chlorophyll-a concentration, assuming that each class has a specific absorp...A previously developed model was modified to derive three phytoplankton size classes (micro-, nano-, and pico-phytoplankton) from the overall chlorophyll-a concentration, assuming that each class has a specific absorption coefficient. The modified model performed well using in-situ data from the northern South China Sea, and the results were reliable and accurate. The relative errors of the size-fractioned chlorophyll-a concentration for each size class were: micro-:21%, nano-:41%, pico-:26%, and nano+pico:23%. The model was then applied on ocean color remote sensing data to examine the distribution and variation of phytoplankton size classes in northern South China Sea on a large scale.展开更多
We studied the role of sophorolipid in inhibiting harmful algae bloom (HAB). Different sophorolipid concentrations were tested on marine microalgae, zooplankton, fish, and bivalve (Mytilus edulis) in laboratory. T...We studied the role of sophorolipid in inhibiting harmful algae bloom (HAB). Different sophorolipid concentrations were tested on marine microalgae, zooplankton, fish, and bivalve (Mytilus edulis) in laboratory. The result shows that sophorolipid could inhibit the growth of algal species selectively. Among three algae species selected, Platymonas helgolandica var. tsingtaoensis was promoted with increasing sophorolipid concentration; Isochrysis galbana was inhibited seven days later in sophorolipid concentration below 40 mg/L; and Nitzschia closterium f. minutissima was inhibited obviously in only a high sophorolipid concentration over 20 mg/L. Therefore, sophorolipid in a low concentration at 〈20 mg/L could remove certain harmful algae species effectivelywithout harming other non-harmful microalgae. For other animals, sophorolipid could inhibit the growth of ciliate Strombidium sp. by 50% at 20 mg/L sophorolipid concentration after 96 h. The concentration in 96-h LC50 for Calanus sinicus, Neomysis awatschensis, Lateolabrax japonicus, and Paralichthys olivaceus was 15, 150, 60, and 110 mg/L, respectively. The 24 h LC50 value for Arternia salina was 600 mg/L. The relative clearance rate of mussel Mytilus edulis decreased to 80%, 40%, and 20% of the control group after being exposed to 20, 50, and 100 mg/L sophorolipid for 24 h. Therefore, the toxicity for mitigation of harmful algae bloom at previously recommended concentration of 5-20 mg/L sophorolipid is low for most tested organisms in this reaserch.展开更多
In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high dow...In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high download requirements, and the other one has low download requirements. Each satellites group has its own controller for bandwidth allocation, and can get payments from the satellites for the allocated resources. The relationships between the controllers and satellites are formed as a Stackelberg game. In our model, differential equation is introduced to describe the bandwidth dynamics for the whole satellite communication network. Combine the differential equation and Stackelberg game together, we can formulate the bandwidth allocation problems in satellite communication network as a Stackelber differential game. The solutions to the proposed game is solved based the Bellman dynamic equations. Numerical simulations are given to prove the effeteness and correctness of the proposed approach.展开更多
Seven surveys were carried out in April, September, October, December 2006 and March, May, August 2007 in the Yellow Sea, China. Variations in the spatial and temporal distribution of Synechococcus, picoeukaryotes and...Seven surveys were carried out in April, September, October, December 2006 and March, May, August 2007 in the Yellow Sea, China. Variations in the spatial and temporal distribution of Synechococcus, picoeukaryotes and heterotrophic bacteria are quantified using flow cytometry. Synechococcus and heterotrophic bacteria are most abundant from late spring to autumn, while picoeukaryotes concentration is high in spring. Synechococcus and heterotrophic bacteria concentrated high in the northwest part of the Yellow Sea in spring and autumn, while picoeukaryotes distributed evenly over the whole study area except for a small frontal zone in the coastal area on the west (in spring) and central Yellow Sea (in autumn). Under mixing conditions, the vertical distribution of the three picoplankton groups showed a well-mixed pattern. Upon a well-established stratification, the maximum abundance of picoplankton occurred above the mixed layer depth (-30 m). Cell sizes of Synechococcus and picoeukaryotes were estimated by converting forward scatter signals (FSC) from cytometry analysis to cell diameter, showing the results of 0.65-0.82 um for Synechococcus and 0.85-1.08 um for picoeukaryotes. The average integrated carbon biomasses ranged 15.26-312.62 mgC/m2 for Synechococcus, 18.54-51.57 mgC/m2 for picoeukaryotes, and 402.63-818.46 mgC/m2 for heterotrophic bacteria. The distribution of Synechococcus and heterotrophic bacteria was temperature dependent, and picoplankton presence was poor in the Yellow Sea Cold Water Mass.展开更多
Spatial distribution of phaeopigment and size-fractionated chlorophyll a(Chl a) concentrations were examined in relation to hydrographic conditions in the northern South China Sea(NSCS) during a survey from 20 August ...Spatial distribution of phaeopigment and size-fractionated chlorophyll a(Chl a) concentrations were examined in relation to hydrographic conditions in the northern South China Sea(NSCS) during a survey from 20 August to 12 September, 2014. The total Chl a concentration varied from 0.006 to 1.488 μg/L with a mean value of 0.259±0.247(mean±standard deviation) μg/L. Chl a concentration was generally higher in shallow water(<200 m) than in deep water(>200 m), with mean values of 0.364±0.311 μg/L and 0.206±0.192 μg/L respectively. Vertically, the maximum total Chl a concentration appeared at depths of 30–50 m and gradually decreased below 100 m. The size-fractionated Chl a concentrations of grid stations and time-series stations(SEATS and J4) were determined, with values of pico-(0.7–2 μm), nano-(2–20 μm) and micro- plankton(20–200 μm) ranging from 0.001–0.287(0.093±0.071 μg/L), 0.004–1.149(0.148±0.192 μg/L) and 0.001–0.208(0.023±0.036 μg/L), respectively. Phaeopigment concentrations were determined at specifi c depths at ten stations, except for at station A9, and varied from 0.007 to 0.572(0.127±0.164) μg/L. Nano-and pico-plankton were the major contributors to total phytoplankton biomass, accounting for 50.99%±15.01% and 39.30%±15.41%, respectively, whereas microplankton only accounted for 9.39%±8.66%. The results indicate that the contributions of microplankton to total Chl a biomass were less important than picoplankton or nanoplankton in the surveyed NSCS. Diff erent sized-Chl a had similar spatial patterns, with peak values all observed in subsurface waters(30–50 m). The summer monsoon, Kuroshio waters, Zhujiang(Pearl) River plume, and hydrological conditions are speculated to be the factors controlling the abundance and spatial heterogeneity of Chl a biomass in the NSCS.展开更多
Dilution incubations and Calanus sinicus addition incubations were simultaneously conducted at five stations in the Yellow Sea in June of 2004 to evaluate the impact of microzooplankton and Calanus sinicus on phytopla...Dilution incubations and Calanus sinicus addition incubations were simultaneously conducted at five stations in the Yellow Sea in June of 2004 to evaluate the impact of microzooplankton and Calanus sinicus on phytoplankton based on the Chlorophyll a(Chl-a) levels.The Chl-a growth rates(k) ranged from 0.60-1.67 d-1,while microzooplankton grazed the Chl-a at rates(g) of 0.29-0.62 d-1.The addition of C.sinicus enhanced the Chl-a growth rate(Z) by 0.004-0.037 d-1 ind.-1 L.C.sinicus abundance ranged from 84.1-160.9 ind.m-3,which occupied 90.7%-99.1% of the copepod(>500 μm) population.The in-situ increase in phytoplankton by C.sinicus community was estimated to be 0.000 4-0.005 9 d-1.These results showed that microzooplankton were the main grazers of phytoplankton,while C.sinicus induced a slight increase in the levels of phytoplankton.展开更多
Abstract Picoplankton distribution was investigated in different water masses of the East China Sea in November, 2006 and February, 2007. The autumn and winter cruises crossed three major water masses: the coastal wa...Abstract Picoplankton distribution was investigated in different water masses of the East China Sea in November, 2006 and February, 2007. The autumn and winter cruises crossed three major water masses: the coastal water mass (CWM), the mixed water mass (MWM), which forms on the continental shelf, and the Kuroshio water mass (KWM). Picoplankton composition was resolved into four main groups by flow cytometry, namely Synechococcus, Prochlorococcus, picoeukaryotes, and heterotrophic bacteria. The average abundances of Synechococcus, picoeukaryotes, and heterotrophic bacteria were (0.63+ 10.88)~ 103, (1.61+1.16)x103, (3.39~1.27)x105 cells/mL in autumn and (6.45~8.60)x103, (3.23~2.63)x103, (3.76~1.37)x 105 cells/mL in winter, respectively. Prochlorococcus was not found in the CWM and seldom observed in surface samples in either season. However, Prochlorococcus was observed in the MWM and KWM (approximately 103 cells/mL) in both auttman and winter. Synechococcus distribution varied considerably among water masses, with the highest levels in KWM and lowest levels in CWM. The depth-averaged integrated abundance of Synechococcus was approximately 5-fold higher in KWM than in CWM, which may be due primarily to water temperature. In the MWM, Synechococcus was resolved as two subgroups; the presence of both subgroups was more common in autumn. Picoeukaryote abundance varied less among water masses than Synechococcus, and heterotrophic bacteria depth-averaged integrated abundance exhibited the smallest seasonal variations with respect to water mass. Correlation analysis showed that relationships between picoplankton abundances and environmental factors (temperature, nutrients, and chlorophyll a) differed among the three water masses, suggesting that the three water masses have different effects on picoplankton distribution (particularly Synechococcus).展开更多
Spatial distributions and seasonal variations of picoplankton (i.e. Synechococcus spp., Prochlorococcus spp., picoeukaryotes and heterotrophic bacteria) and viruses in the Changjiang estuary have been reported in the ...Spatial distributions and seasonal variations of picoplankton (i.e. Synechococcus spp., Prochlorococcus spp., picoeukaryotes and heterotrophic bacteria) and viruses in the Changjiang estuary have been reported in the past. However, short-term variations (e.g. at a tidal timescale) of these organisms and their regulating factors remain unclear. We determined the time-series of fluctuations of picoplankton and viruses with tide simultaneously in flow cytometry in the Changjiang estuary during a cruise in June 2006, in which a tidal model based rectangle equation was applied. The results indicate that high cell abundances of picoplankton and viruses occurred during flood tide and low cell abundances during ebb tide. The period of the surface cell abundance variations was about 13 h, suggesting the surface cell abundances in the Changjiang estuary were largely regulated by tide. However, cell abundances in middle and bottom waters varied in different periods due to influences of tidal induced physical forces such as resuspension and stratification. Therefore, tidal action is an important factor for the diel variations of picoplankton and viruses in the Changjiang estuary.展开更多
Characteristics of interaction between di-2-ethylhexyl phthalate(DEHP) and particulate in a eutrophic lake were studied in this paper. DEHP concentrations ranged from 89.9 to 247 μg/L with an average value of 146 μg...Characteristics of interaction between di-2-ethylhexyl phthalate(DEHP) and particulate in a eutrophic lake were studied in this paper. DEHP concentrations ranged from 89.9 to 247 μg/L with an average value of 146 μg/L in subsurface water (SSW) samples, and from 82.0 to 390 μg/L with an average value of 211 μg/L in water surface microlayer (SM) samples. The results indicate that there was only a weak correlation between the DEHP concentrations and suspended particulate material(SPM) concentrations in both SSW and SM, while the significant correlation between DEHP concentrations and chlorophyll a concentrations was found, which suggestes that DEHP was principally bound to phytoplankton in the eutrophic lake. Correlation between DEHP concentrations and total phosphor (TP) concentrations was also found in this investigation.Enrichment factors (EF) of DEHP in SM were in the range of 0.85 to 2.12 with an average value of 1.35. DEHP EFs were significantly related to the enrichment of chlorophyll a in SM. The results suggest that the enrichment of DEHP in SM of this eutrophic lake was mainly due to DEHP accumulation in phytoplankton and was controlled by distribution of phytoplankton between SM and SSW.展开更多
To understand the genetic diversity and population changes in cyanophages in the coastal waters of Shantou, northeast South China Sea, we used the capsid assembly protein gene g20 as a marker of the abundance and phyl...To understand the genetic diversity and population changes in cyanophages in the coastal waters of Shantou, northeast South China Sea, we used the capsid assembly protein gene g20 as a marker of the abundance and phylogeny of natural cyanomyovirus communities. The abundance of total viruses, heterotrophic bacteria, and picophytoplankton in the coastal waters was monitored with flow cytometry. Hydrological parameters (NO3^-, NO2^-, NH3, soluble reactive phosphorus, total dissolved nitrogen, total dissolved phosphorus, dissolved oxygen, chemical oxygen demand, temperature, salinity, and chlorophyll a concentration) and microbial abundance (total viruses, total bacteria, Prochlorococcus, Synechococcus, and eukaryotes) were measured in the upper and lower layers at four sampling sites in the research area. In the direct viral counts, cyanomyoviruses accounted for 1.92% to 〉10% of the total viral community. A phylogenetic analysis showed that the g20 sequences in the Shantou coastal waters were very diverse, distributed in eight distinct operational taxonomic units, including the newly formed Cluster W. The g20 gene copies inferred from real time PCR assay indicated that cyanomyovimses were correlated significantly with the heterotrophic bacteria numbers and the nitrate and chlorophyll a concentrations. These results suggest that cyanomyoviruses are ubiquitous and are an abundant component of the virioplankton in Shantou coastal waters.展开更多
文摘Microzoopiankton community composition in the north of South China Sea was investigated during autumn (between September and October), 2004. Dilution technique using chlorophyll a (Chl a) was employed to estimate grazing rates and grazing pressure. The results showed that Polymenophorea Oligotrichida was the dominant group with 16 species, and there were 4 species in Oligotrichina and 11 species in Tintinnina. The ciliates abundance ranged from 9 to 102 ind/m^3, instantaneous growth rates of phytoplankton (k) varied from 0.03 / d to 2.13 / d. Grazing rates of microzooplankton(g) ranged between 0.01 / d and 1.06 / d. The grazing pressure on initial phytoplankton stock (Pi) and primary production (Pp) was 0.089 % - 65.23 % and 33.63 % - 86.04 %, respectively. The grazing of microzooplankton was mainly limited by ciliates abundance. Results of grazing pressure on primary production indicated that microzooplankton played an improtant role in transmitting primary production in the north of South China Sea.
文摘Responses of Prochlorococcus (Pro), Synechococcus (Syn), pico-eukaryotes (Euk) and heterotrophic bacteria (Bact) in pelagic marine ecosystems to external nutrient perturbations were examined using nitrogen- (N), phosphorus- (P), iron- (Fe), and cobalt- (Co) enriched incubations in the South China Sea in November 1997. Variations in abundance of the 4 groups of microorganism and cellular pigment content of the autotrophs during incubation were followed by flow-cytometric measurements for seven days. During the incubation, Syn and Euk showed a relatively higher demand on Fe and N, while Pro required higher levels of Co and P. The Fe was inadequate for all the organisms in the deep euphotic zone (75 m) of the study area. The experimental results also implied that biological interaction among the organisms played a role in the community structure shift during the incubation. It seemed that besides the effects of temperature, there are some other physical and chemical limitations as well as impacts from biological interactions on Pro distribution in coast waters.
基金Supported by the Knowledge Innovation Project of Chinese Academy of Sciences (No KZCX2-403)a Joint Project of the Natural Science Foundation of China and Guangdong Province (No U0633006)
文摘The species composition and abundance of microzooplankton at 10 marine and five coastal stations (Hongdao, Daguhe, Haibohe, Huangdao and Hangxiao) in the Jiaozhou Bay (Qingdao, China) were studied in 2001. The microzooplankton community was found to be dominated by Tintinnopsis beroidea, Tintinnopsis urnula, Tintinnopsis brevicoUis and Codonellopsis sp. The average abundance of microzooplankton was highly variable among stations. Specifically, the abundance of microzooplankton was higher at inshore stations and lower in the center of the bay (St. 5), bay mouth (St. 9) and outside the bay (St. 10). The highest average annual densities (346 ind./L) was observed at St. 3, while the lowest (55 ind./L) was at St. 10. Two abundance peaks were recorded in May (324 ind./L) and February (300 ind./L). The distribution of microzooplankton in three sampling layers at the 10 stations was relatively homogenous and the abundance decreased slightly as the water depth increased. At coastal stations, the highest average annual density was recorded at Hongdao Station (677 ind./L), followed by Daguhe Station (616 ind./L), Haibohe Station (400 ind./L ), Huangdao Station (275 ind./L) and Hangxiao Station (73 ind./L). Furthermore, a 24-h sampling analysis conducted at Hangxiao Station revealed that the microzooplankton assemblages were characterized by a bimodal diel vertical migration pattem, with the highest densities occurring at dusk (154 ind./L), followed by dawn (146 ind./L), noon (93 ind./L) and midnight (77 ind./L). The density of microzooplankton in the Jiaozhou Bay was in the middle range of the densities of temperate coastal waters worldwide.
基金supported by the General Oceano-graphic Survey Project(908 Project)the Special Fund forPublic Welfare Industry(Oceanography)(Grant No.20080511)the CAS Hundred Talents Project‘The response mechanism of the typical gulf ecosystem to the environmental changes’
文摘In order to understand the large-scale spatial distribution characteristics of picoplankton,nanophytoplankton and virio-plankton and their relationship with environmental variables in coastal and offshore waters,flow cytometry(FCM) was used to ana-lyze microbial abundance of samples collected in summer from four depths at 36 stations in the North Yellow Sea(NYS).The data revealed spatial heterogeneity in microbial populations in the offshore and near-shore waters of the NYS during the summer.For the surface layer,picoeukaryotes were abundant in the near-shore waters,Synechococcus was abundant in the offshore areas,and bacte-rial and viral abundances were high in the near-shore waters around the Liaodong peninsula.In the near-shore waters,no significant vertical variation of picophytoplankton(0.2-2μm) abundance was found.However,the nanophytoplankton abundance was higher in the upper layers(from the surface to 10 m depth) than in the bottom layer.For the offshore waters,both pico-and nanophytoplankton(2-20μm) abundance decreased sharply with depth in the North Yellow Sea Cold Water Mass(NYSCWM).But,for the vertical dis-tribution of virus and bacteria abundance,no significant variation was observed in both near-shore and offshore waters.Autotrophic microbes were more sensitive to environmental change than heterotrophic microbes and viruses.Viruses showed a positive correla-tion with bacterial abundance,suggesting that the bacteriophage might be prominent for virioplankton(about 0.45μm) in summer in the NYS and that viral abundance might play an important role in microbial loop functions.
文摘The ciliate community in the Bohai Sea (China) was studied from 23 September to 7 October 1998. A hurricane struck the study area between the two grid station investigations, which were six days apart. Six tintinnid species (Favella panamensis, Leptotintinnus nordqvisti, Tintinnopsis butschlii, T. karajacensis, T. Radix and Wangiella dicollaria) were identified. Total cililate abundance in the surface layer ranged from 20 to 770 ind/l. In the first grid investigation, Tintinnopsis karajacensis dominated in the warm, low salinity waters at the Huanghe River mouth. Aloricate ciliate sp.1 dominated in the cold, high salinity waters in the northwest of the study area and the Bohai Strait. In the second grid investigation, T. Karajacensis almost disappeared. The abundance of aloricate ciliate sp.1 decreased drastically. The aloricate ciliate sp.2 dominated at the Bohai Strait. The change of ciliate abundance may be due to the disturbance of hurricane.
基金the University Grants Council of Hong Kong and its Area of Excellence Program to PJH. KF was supported by a JSPS grant on the ecophysiology of green Noctiluca in the Gulf of Thailand. PMG received funding from NSF (No. OCE-1015980)This is contribution number 4502 from the University of Maryland Center for Environmental Studies. KY Acknowledges Support from the CAS/SAFEA International Partnership Program for Creative Research Teams (No. KZCXZYW-T001). DMA received partial funding through the NSF/NIEHS Centers for Oceans and Human Health (No. NIEHS P50 ES012742, NSF OCE- 043072 and OCE-0911031), and through NSF Grant (No. OCE-0850421)+1 种基金 This paper is based on work partially supported by SCOR/LOICZ Working Group 132, supported by the Scientific Committee on Oceanographic Research (SCOR) through grants from the U.S. National Science Foundation (No OCE-0938349 and OCE-0813697) from the Land-Ocean Interactions in the Coastal Zone (LOICZ) Project and the Chinese Academy of Sciences. We thank A. KANA for assistance with the GIS produced maps and LIU Hao for his assistance with the tables and references.
文摘The dinoflagellate Noctiluca scintillans is one of the most important and abundant red tide organisms and it is distributed world-wide. It occurs in two forms. Red Noctiluca is heterotrophic and fills the role of one of the microzooplankton grazers in the foodweb. In contrast, green Noctiluca contains a photosynthetic symbiont Pedinomonas noctilucae (a prasinophyte), but it also feeds on other plankton when the food supply is abundant. In this review, we document the global distribution of these two forms and include the first maps of their global distribution. Red Noctiluca occurs widely in the temperate to sub-tropical coastal regions of the world. It occurs over a wide temperature range of about 10℃ to 25℃ and at higher salinities (generally not in estuaries). It is particularly abundant in high productivity areas such as upwelling or eutrophic areas where diatoms dominate since they are its preferred food source. Green Noctiluca is much more restricted to a temperature range of 25℃-30℃ and mainly occurs in tropical waters of Southeast Asia, Bay of Bengal (east coast of India), in the eastern, western and northern Arabian Sea, the Red Sea, and recently it has become very abundant in the Gulf of Oman. Red and green Noctiluca do overlap in their distribution in the eastern, northern and western Arabian Sea with a seasonal shift from green Noctiluca in the cooler winter convective mixing, higher productivity season, to red Noctiluca in the more oligotrophic warmer summer season.
基金Supported by Natural Science Foundation of China (No.40730846 40521003)
文摘The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, February-March 1998, and August 1998). The results show that picophytoplankton and nanophytoplankton dominate the phytoplankton biomass, in average of 38% and 40%, respectively. SYN and PEUK varied over time in abundance and carbon biomass, greater in summer than in winter, in range of (7.70–209.2)×106 and (0.75–15.4)×106 cells/cm2 in the abundance, and 1.93–52.3 and 1.57–32.4 μgC/cm2 in the carbon biomass, for SYN and PEUK, respectively. The horizontal distributions of both groups were diurnal but heterogeneous in abundance, depending on the groups and layer of depths. Temperature is the key controlling factor for picophytoplankton distribution (especially in winter) in the Strait.
基金Supported by the National Natural Science Foundation of China (Nos.U0933005,41076014,40906021,41176035)the National High Technology Research and Development Program of China (863 Program)(No.2007AA092001-02)
文摘A previously developed model was modified to derive three phytoplankton size classes (micro-, nano-, and pico-phytoplankton) from the overall chlorophyll-a concentration, assuming that each class has a specific absorption coefficient. The modified model performed well using in-situ data from the northern South China Sea, and the results were reliable and accurate. The relative errors of the size-fractioned chlorophyll-a concentration for each size class were: micro-:21%, nano-:41%, pico-:26%, and nano+pico:23%. The model was then applied on ocean color remote sensing data to examine the distribution and variation of phytoplankton size classes in northern South China Sea on a large scale.
基金Supported by the National Natural Science Foundation of China (No. 40506026,40876083,40631008)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-Q07-01)the National Basic Research Priorities Program (No. 2006CB400606)
文摘We studied the role of sophorolipid in inhibiting harmful algae bloom (HAB). Different sophorolipid concentrations were tested on marine microalgae, zooplankton, fish, and bivalve (Mytilus edulis) in laboratory. The result shows that sophorolipid could inhibit the growth of algal species selectively. Among three algae species selected, Platymonas helgolandica var. tsingtaoensis was promoted with increasing sophorolipid concentration; Isochrysis galbana was inhibited seven days later in sophorolipid concentration below 40 mg/L; and Nitzschia closterium f. minutissima was inhibited obviously in only a high sophorolipid concentration over 20 mg/L. Therefore, sophorolipid in a low concentration at 〈20 mg/L could remove certain harmful algae species effectivelywithout harming other non-harmful microalgae. For other animals, sophorolipid could inhibit the growth of ciliate Strombidium sp. by 50% at 20 mg/L sophorolipid concentration after 96 h. The concentration in 96-h LC50 for Calanus sinicus, Neomysis awatschensis, Lateolabrax japonicus, and Paralichthys olivaceus was 15, 150, 60, and 110 mg/L, respectively. The 24 h LC50 value for Arternia salina was 600 mg/L. The relative clearance rate of mussel Mytilus edulis decreased to 80%, 40%, and 20% of the control group after being exposed to 20, 50, and 100 mg/L sophorolipid for 24 h. Therefore, the toxicity for mitigation of harmful algae bloom at previously recommended concentration of 5-20 mg/L sophorolipid is low for most tested organisms in this reaserch.
基金supported by National Science Foundation Project of P. R. China (No. 61501026, U1603116)
文摘In this paper, a Stackelberg differential game based approach is proposed to solve the bandwidth allocation problems in satellite communication network. All the satellites are divided into two groups, one has high download requirements, and the other one has low download requirements. Each satellites group has its own controller for bandwidth allocation, and can get payments from the satellites for the allocated resources. The relationships between the controllers and satellites are formed as a Stackelberg game. In our model, differential equation is introduced to describe the bandwidth dynamics for the whole satellite communication network. Combine the differential equation and Stackelberg game together, we can formulate the bandwidth allocation problems in satellite communication network as a Stackelber differential game. The solutions to the proposed game is solved based the Bellman dynamic equations. Numerical simulations are given to prove the effeteness and correctness of the proposed approach.
基金Supported by the National Basic Research Program of China (973 Program) (No.2011CB409804)the National High Technology Research and Development Program of China (863 Program) (No.2007AA09Z434)the Knowledge Innovation Project,CAS (KZCX2-YW-213-3)
文摘Seven surveys were carried out in April, September, October, December 2006 and March, May, August 2007 in the Yellow Sea, China. Variations in the spatial and temporal distribution of Synechococcus, picoeukaryotes and heterotrophic bacteria are quantified using flow cytometry. Synechococcus and heterotrophic bacteria are most abundant from late spring to autumn, while picoeukaryotes concentration is high in spring. Synechococcus and heterotrophic bacteria concentrated high in the northwest part of the Yellow Sea in spring and autumn, while picoeukaryotes distributed evenly over the whole study area except for a small frontal zone in the coastal area on the west (in spring) and central Yellow Sea (in autumn). Under mixing conditions, the vertical distribution of the three picoplankton groups showed a well-mixed pattern. Upon a well-established stratification, the maximum abundance of picoplankton occurred above the mixed layer depth (-30 m). Cell sizes of Synechococcus and picoeukaryotes were estimated by converting forward scatter signals (FSC) from cytometry analysis to cell diameter, showing the results of 0.65-0.82 um for Synechococcus and 0.85-1.08 um for picoeukaryotes. The average integrated carbon biomasses ranged 15.26-312.62 mgC/m2 for Synechococcus, 18.54-51.57 mgC/m2 for picoeukaryotes, and 402.63-818.46 mgC/m2 for heterotrophic bacteria. The distribution of Synechococcus and heterotrophic bacteria was temperature dependent, and picoplankton presence was poor in the Yellow Sea Cold Water Mass.
基金Supported by the Program for New Century Excellent Talents in University(No.NCET-12-1065)the Ocean Public Welfare Scientifi c Research Project(No.201105021-03)+3 种基金the National Natural Science Foundation of China(Nos.41276124,41176136)the Science Fund for University Creative Research Groups in Tianjin(No.TD12-5003)the Key Project of National Natural Science Foundation of Tianjin(No.12JCZDJC30100)to J Sunthe National Natural Science Foundation of China(No.41306118)to Y Feng
文摘Spatial distribution of phaeopigment and size-fractionated chlorophyll a(Chl a) concentrations were examined in relation to hydrographic conditions in the northern South China Sea(NSCS) during a survey from 20 August to 12 September, 2014. The total Chl a concentration varied from 0.006 to 1.488 μg/L with a mean value of 0.259±0.247(mean±standard deviation) μg/L. Chl a concentration was generally higher in shallow water(<200 m) than in deep water(>200 m), with mean values of 0.364±0.311 μg/L and 0.206±0.192 μg/L respectively. Vertically, the maximum total Chl a concentration appeared at depths of 30–50 m and gradually decreased below 100 m. The size-fractionated Chl a concentrations of grid stations and time-series stations(SEATS and J4) were determined, with values of pico-(0.7–2 μm), nano-(2–20 μm) and micro- plankton(20–200 μm) ranging from 0.001–0.287(0.093±0.071 μg/L), 0.004–1.149(0.148±0.192 μg/L) and 0.001–0.208(0.023±0.036 μg/L), respectively. Phaeopigment concentrations were determined at specifi c depths at ten stations, except for at station A9, and varied from 0.007 to 0.572(0.127±0.164) μg/L. Nano-and pico-plankton were the major contributors to total phytoplankton biomass, accounting for 50.99%±15.01% and 39.30%±15.41%, respectively, whereas microplankton only accounted for 9.39%±8.66%. The results indicate that the contributions of microplankton to total Chl a biomass were less important than picoplankton or nanoplankton in the surveyed NSCS. Diff erent sized-Chl a had similar spatial patterns, with peak values all observed in subsurface waters(30–50 m). The summer monsoon, Kuroshio waters, Zhujiang(Pearl) River plume, and hydrological conditions are speculated to be the factors controlling the abundance and spatial heterogeneity of Chl a biomass in the NSCS.
基金Supported by the National Natural Science Foundation of China(No.40876085),the National Natural Science Foundation of China(No.40821004)the National Basic Research Program of China(973 Program)(No.2006CB400604)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-YW-213-3)
文摘Dilution incubations and Calanus sinicus addition incubations were simultaneously conducted at five stations in the Yellow Sea in June of 2004 to evaluate the impact of microzooplankton and Calanus sinicus on phytoplankton based on the Chlorophyll a(Chl-a) levels.The Chl-a growth rates(k) ranged from 0.60-1.67 d-1,while microzooplankton grazed the Chl-a at rates(g) of 0.29-0.62 d-1.The addition of C.sinicus enhanced the Chl-a growth rate(Z) by 0.004-0.037 d-1 ind.-1 L.C.sinicus abundance ranged from 84.1-160.9 ind.m-3,which occupied 90.7%-99.1% of the copepod(>500 μm) population.The in-situ increase in phytoplankton by C.sinicus community was estimated to be 0.000 4-0.005 9 d-1.These results showed that microzooplankton were the main grazers of phytoplankton,while C.sinicus induced a slight increase in the levels of phytoplankton.
基金Supported by the National Basic Research Program of China(973 Program)(No.2011CB409804)the National Natural Science Foundation of China for Creative Research Groups(No.41121064)the Knowledge Innovation Program of China(No.KZCX2-YW-Q07-02)
文摘Abstract Picoplankton distribution was investigated in different water masses of the East China Sea in November, 2006 and February, 2007. The autumn and winter cruises crossed three major water masses: the coastal water mass (CWM), the mixed water mass (MWM), which forms on the continental shelf, and the Kuroshio water mass (KWM). Picoplankton composition was resolved into four main groups by flow cytometry, namely Synechococcus, Prochlorococcus, picoeukaryotes, and heterotrophic bacteria. The average abundances of Synechococcus, picoeukaryotes, and heterotrophic bacteria were (0.63+ 10.88)~ 103, (1.61+1.16)x103, (3.39~1.27)x105 cells/mL in autumn and (6.45~8.60)x103, (3.23~2.63)x103, (3.76~1.37)x 105 cells/mL in winter, respectively. Prochlorococcus was not found in the CWM and seldom observed in surface samples in either season. However, Prochlorococcus was observed in the MWM and KWM (approximately 103 cells/mL) in both auttman and winter. Synechococcus distribution varied considerably among water masses, with the highest levels in KWM and lowest levels in CWM. The depth-averaged integrated abundance of Synechococcus was approximately 5-fold higher in KWM than in CWM, which may be due primarily to water temperature. In the MWM, Synechococcus was resolved as two subgroups; the presence of both subgroups was more common in autumn. Picoeukaryote abundance varied less among water masses than Synechococcus, and heterotrophic bacteria depth-averaged integrated abundance exhibited the smallest seasonal variations with respect to water mass. Correlation analysis showed that relationships between picoplankton abundances and environmental factors (temperature, nutrients, and chlorophyll a) differed among the three water masses, suggesting that the three water masses have different effects on picoplankton distribution (particularly Synechococcus).
基金Supported by the National Basic Research Program of China (973 Program) (Nos. 2002CB412405, 2004CB720505)a fund to the Innovative Research Team, the Ministry of Education of China (No.IRT0427)+1 种基金the PhD Program Scholarship Fund of ECNU 2007the Special Research Fund for the National Non-profit Institutes (East China Sea Fisheries Research Institutes) (No. 2008M13)
文摘Spatial distributions and seasonal variations of picoplankton (i.e. Synechococcus spp., Prochlorococcus spp., picoeukaryotes and heterotrophic bacteria) and viruses in the Changjiang estuary have been reported in the past. However, short-term variations (e.g. at a tidal timescale) of these organisms and their regulating factors remain unclear. We determined the time-series of fluctuations of picoplankton and viruses with tide simultaneously in flow cytometry in the Changjiang estuary during a cruise in June 2006, in which a tidal model based rectangle equation was applied. The results indicate that high cell abundances of picoplankton and viruses occurred during flood tide and low cell abundances during ebb tide. The period of the surface cell abundance variations was about 13 h, suggesting the surface cell abundances in the Changjiang estuary were largely regulated by tide. However, cell abundances in middle and bottom waters varied in different periods due to influences of tidal induced physical forces such as resuspension and stratification. Therefore, tidal action is an important factor for the diel variations of picoplankton and viruses in the Changjiang estuary.
文摘Characteristics of interaction between di-2-ethylhexyl phthalate(DEHP) and particulate in a eutrophic lake were studied in this paper. DEHP concentrations ranged from 89.9 to 247 μg/L with an average value of 146 μg/L in subsurface water (SSW) samples, and from 82.0 to 390 μg/L with an average value of 211 μg/L in water surface microlayer (SM) samples. The results indicate that there was only a weak correlation between the DEHP concentrations and suspended particulate material(SPM) concentrations in both SSW and SM, while the significant correlation between DEHP concentrations and chlorophyll a concentrations was found, which suggestes that DEHP was principally bound to phytoplankton in the eutrophic lake. Correlation between DEHP concentrations and total phosphor (TP) concentrations was also found in this investigation.Enrichment factors (EF) of DEHP in SM were in the range of 0.85 to 2.12 with an average value of 1.35. DEHP EFs were significantly related to the enrichment of chlorophyll a in SM. The results suggest that the enrichment of DEHP in SM of this eutrophic lake was mainly due to DEHP accumulation in phytoplankton and was controlled by distribution of phytoplankton between SM and SSW.
基金Supported by the National Natural Science Foundation of China(No.41176103)the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(FDYT)(No.LYM09079)the International Cooperation Project of Guangdong Science&Technology Department(No.2011B050300026)
文摘To understand the genetic diversity and population changes in cyanophages in the coastal waters of Shantou, northeast South China Sea, we used the capsid assembly protein gene g20 as a marker of the abundance and phylogeny of natural cyanomyovirus communities. The abundance of total viruses, heterotrophic bacteria, and picophytoplankton in the coastal waters was monitored with flow cytometry. Hydrological parameters (NO3^-, NO2^-, NH3, soluble reactive phosphorus, total dissolved nitrogen, total dissolved phosphorus, dissolved oxygen, chemical oxygen demand, temperature, salinity, and chlorophyll a concentration) and microbial abundance (total viruses, total bacteria, Prochlorococcus, Synechococcus, and eukaryotes) were measured in the upper and lower layers at four sampling sites in the research area. In the direct viral counts, cyanomyoviruses accounted for 1.92% to 〉10% of the total viral community. A phylogenetic analysis showed that the g20 sequences in the Shantou coastal waters were very diverse, distributed in eight distinct operational taxonomic units, including the newly formed Cluster W. The g20 gene copies inferred from real time PCR assay indicated that cyanomyovimses were correlated significantly with the heterotrophic bacteria numbers and the nitrate and chlorophyll a concentrations. These results suggest that cyanomyoviruses are ubiquitous and are an abundant component of the virioplankton in Shantou coastal waters.