A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure a...A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure and the phase aggregate were analyzed by scanning electron microscopy and X-ray diffractometry, respectively. Microhardness, wear resistance and corrosion behavior were assessed using a Vickers microhardness tester, a ball-on-disk wear testing machine and the electrochemical measurement method, respectively. Microstructural studies show that the coatings possess a densely layered structure with the porosity less than 2.1%. The tribological behavior of the coatings examined under dry conditions shows that their relative wear resistance is five times higher than that of the substrate material. Both adhesive wear and abrasive wear contribute to the friction, but the former is the dominant wear mechanism of the metallic glass coatings. The coatings exhibit low passive current density and extremely wide passive region in 3.5% NaCl solution, thus indicating excellent corrosion resistance.展开更多
Explosive cladding of Al 5052–Al 1100 plate, interfaced with a stainless steel wire mesh interlayer, is attempted. Loading ratio and standoff distance were varied. An increase in loading ratio (R) and standoff distan...Explosive cladding of Al 5052–Al 1100 plate, interfaced with a stainless steel wire mesh interlayer, is attempted. Loading ratio and standoff distance were varied. An increase in loading ratio (R) and standoff distance (S) enhances the plate velocity (Vp), dynamic bend angle (β) and pressure developed (P). The interface morphology of the explosive clads confirms strong metallurgical bond between the wire mesh and aluminum plates. Further, a smooth transition from straight to undulating interlayered topography is witnessed. The introduction of a wire mesh, as interlayer, leads to an improvement in mechanical strength with a slender reduction in overall corrosion resistance of the “explosive clads”.展开更多
Waveforms generated by the 50t explosion of project Brightlight ( I ) were recorded by HILR array. Using array techniques, the author performed identification, f-k analysis, velocity spectrum analysis, etc. of the w...Waveforms generated by the 50t explosion of project Brightlight ( I ) were recorded by HILR array. Using array techniques, the author performed identification, f-k analysis, velocity spectrum analysis, etc. of the weak signals. The analysis results show that the signal-to-noise ratio after beamforming was obviously enhanced, and the signal could be clearly shown. The energy from this explosion was mainly concentrated in the 1 -8Hz range from f-k analysis. The velocity spectrum gave clear positions of event phases, which could not be seen in the original weak signals. The maximum energy distribution obtained by the Beaman method is close to the theoretical value in the azimuth-slowness domain.展开更多
The explosive characteristics of aluminum powder have great significance in preventing and controlling aluminum-dust explosion accidents, especially the nano-aluminum powder. The explosion characteristics of 100 nm an...The explosive characteristics of aluminum powder have great significance in preventing and controlling aluminum-dust explosion accidents, especially the nano-aluminum powder. The explosion characteristics of 100 nm and 75 μm aluminum powders were investigated by using a 20 L spherical explosion cavity and a horizontal pipe whose cross-section area is 80 mm × 80 mm and length is 8 m. The results show that the maximum explosion pressure and its rising rate of 100 nm aluminum powder gradually increase with increasing concentration of aluminum-powder at the beginning. When aluminum-powder concentration is I kg/m3, the maximum explosion pressure reaches its maximum, and then gradually decreases. While when the concentration is 1.25 kg/m3, the maximum rate of pressure rise obtains its maximum, and then decreases. After 100 nm aluminum powder is exploded in pipes, the peak overpressure of blast wave first decreases and then increases to the maximum at a distance of 298 cm from the ignition source, and then gradually decreases. The most violent concentration is about 0.4 kg/m3 which is lower than 0.8 kg/m3 of 75 μm aluminum powder, so 100 nm aluminum powders are more easily exploded. The change laws of maximum explosion pressure, maximum rate of pressure rise and blast-wave peak overpressure of 100 nm aluminum powders with concentration are similar to those of 75 ktm aluminum powders, but these values are much higher than 75 Bm aluminum powders under the same concentration, so the aluminum-powders explosion of 100 nm will produce more harms. In the process of production, storage and transportation of aluminum powder, some relevant preventive measures can be taken to reduce the loss caused by aluminum-dust explosion according to nano-aluminum dust.展开更多
Microparticle formation and crystallization rate of 1,3,5,7-tetranitro-l,3,5,7-tetraazacyclooctane (HMX) in acetone solution using supercritical carbon dioxide antisolvent (GAS) recrystallization were studied. Scannin...Microparticle formation and crystallization rate of 1,3,5,7-tetranitro-l,3,5,7-tetraazacyclooctane (HMX) in acetone solution using supercritical carbon dioxide antisolvent (GAS) recrystallization were studied. Scanning electronic microscopy, X-ray diffraction and infrared radiation were used to examine particle size, crystallinity and chemical structure. The results show that B-HMX microparticle in different average size (2-9.5um) and with narrow size distribution were obtained by controlling the expansibility, expansion speed, initial concentration and temperature during recrystallization of HMX. The formation of nuclei may be a main cause of consumption of solute when the solution is expanded rapidly enough and the equilibrium concentration is lower, in which almost monodisperse microparticle can be obtained.展开更多
基金Project(51301205)supported by the National Natural Science Foundation of ChinaProject(20130162120001)supported by the Doctoral Program of Higher Education of China+2 种基金Project(K1502003-11)supported by the Changsha Municipal Major Science and Technology Program,ChinaProject(K1406012-11)supported by the Changsha Municipal Science and Technology Plan,ChinaProject(2016CX003)supported by the Innovation-driven Plan in Central South University,China
文摘A metallic glass coating with the composition of Fe51.33Cr14.9Mo25.67Y3.4C3.44B1.26 (mole fraction, %) on the Q235 stainless steel was developed by the detonation gun (D-gun) spraying process. The microstructure and the phase aggregate were analyzed by scanning electron microscopy and X-ray diffractometry, respectively. Microhardness, wear resistance and corrosion behavior were assessed using a Vickers microhardness tester, a ball-on-disk wear testing machine and the electrochemical measurement method, respectively. Microstructural studies show that the coatings possess a densely layered structure with the porosity less than 2.1%. The tribological behavior of the coatings examined under dry conditions shows that their relative wear resistance is five times higher than that of the substrate material. Both adhesive wear and abrasive wear contribute to the friction, but the former is the dominant wear mechanism of the metallic glass coatings. The coatings exhibit low passive current density and extremely wide passive region in 3.5% NaCl solution, thus indicating excellent corrosion resistance.
文摘Explosive cladding of Al 5052–Al 1100 plate, interfaced with a stainless steel wire mesh interlayer, is attempted. Loading ratio and standoff distance were varied. An increase in loading ratio (R) and standoff distance (S) enhances the plate velocity (Vp), dynamic bend angle (β) and pressure developed (P). The interface morphology of the explosive clads confirms strong metallurgical bond between the wire mesh and aluminum plates. Further, a smooth transition from straight to undulating interlayered topography is witnessed. The introduction of a wire mesh, as interlayer, leads to an improvement in mechanical strength with a slender reduction in overall corrosion resistance of the “explosive clads”.
基金The Basic Science Research Project of Commonweal of Nation Level (DQJB06A02 ),ChinaThe Brightlight (Ⅰ) Project from Institute of Geophysics,CEA
文摘Waveforms generated by the 50t explosion of project Brightlight ( I ) were recorded by HILR array. Using array techniques, the author performed identification, f-k analysis, velocity spectrum analysis, etc. of the weak signals. The analysis results show that the signal-to-noise ratio after beamforming was obviously enhanced, and the signal could be clearly shown. The energy from this explosion was mainly concentrated in the 1 -8Hz range from f-k analysis. The velocity spectrum gave clear positions of event phases, which could not be seen in the original weak signals. The maximum energy distribution obtained by the Beaman method is close to the theoretical value in the azimuth-slowness domain.
基金supported by the Major State Basic Research Development Program of China (No. 2011CB201205)the Open Fund Program of the State Key Laboratory of Explosion Science and Technology (No. KFJJ10-19M)
文摘The explosive characteristics of aluminum powder have great significance in preventing and controlling aluminum-dust explosion accidents, especially the nano-aluminum powder. The explosion characteristics of 100 nm and 75 μm aluminum powders were investigated by using a 20 L spherical explosion cavity and a horizontal pipe whose cross-section area is 80 mm × 80 mm and length is 8 m. The results show that the maximum explosion pressure and its rising rate of 100 nm aluminum powder gradually increase with increasing concentration of aluminum-powder at the beginning. When aluminum-powder concentration is I kg/m3, the maximum explosion pressure reaches its maximum, and then gradually decreases. While when the concentration is 1.25 kg/m3, the maximum rate of pressure rise obtains its maximum, and then decreases. After 100 nm aluminum powder is exploded in pipes, the peak overpressure of blast wave first decreases and then increases to the maximum at a distance of 298 cm from the ignition source, and then gradually decreases. The most violent concentration is about 0.4 kg/m3 which is lower than 0.8 kg/m3 of 75 μm aluminum powder, so 100 nm aluminum powders are more easily exploded. The change laws of maximum explosion pressure, maximum rate of pressure rise and blast-wave peak overpressure of 100 nm aluminum powders with concentration are similar to those of 75 ktm aluminum powders, but these values are much higher than 75 Bm aluminum powders under the same concentration, so the aluminum-powders explosion of 100 nm will produce more harms. In the process of production, storage and transportation of aluminum powder, some relevant preventive measures can be taken to reduce the loss caused by aluminum-dust explosion according to nano-aluminum dust.
基金the National Natural Science Foundation of China (No. 29376233).
文摘Microparticle formation and crystallization rate of 1,3,5,7-tetranitro-l,3,5,7-tetraazacyclooctane (HMX) in acetone solution using supercritical carbon dioxide antisolvent (GAS) recrystallization were studied. Scanning electronic microscopy, X-ray diffraction and infrared radiation were used to examine particle size, crystallinity and chemical structure. The results show that B-HMX microparticle in different average size (2-9.5um) and with narrow size distribution were obtained by controlling the expansibility, expansion speed, initial concentration and temperature during recrystallization of HMX. The formation of nuclei may be a main cause of consumption of solute when the solution is expanded rapidly enough and the equilibrium concentration is lower, in which almost monodisperse microparticle can be obtained.