To design heap biooxidation process,it is necessary to understand its internal rules.The heap biooxidation of gold ore from Anhui province was researched in this study.The results showed that the main microorganisms i...To design heap biooxidation process,it is necessary to understand its internal rules.The heap biooxidation of gold ore from Anhui province was researched in this study.The results showed that the main microorganisms in the heap were A.ferrooxidans,F.acidiphilum and L.ferrodiazotrophum.Under their combined action,gold leaching extent rose from 35.62%to 78.08%in 80 d.Boltzmann model matches the actual oxidation effect better and the model equations were obtained.The model predicted that the oxidation extents of arsenic and sulfur are 58.577%and 42.122%after one year,and the gold leaching extent was 80.40%.The arsenic and sulfur oxidation extents,and gold leaching extent were all linearly correlated.It is more reliable to predict gold leaching extent by sulfur oxidation extent.These results provided good guidance for practical application in the actual production.展开更多
Inflammatory bowel disease (IBD) arises from disruption of immune tolerance to the gut commensal microbiota, leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts. In healthy...Inflammatory bowel disease (IBD) arises from disruption of immune tolerance to the gut commensal microbiota, leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts. In healthy individuals the intestinal microbiota have a symbiotic relationship with the host organism and possess important and unique functions, including a metabolic function (i.e. digestion of dietary compounds and xenobiotics, fermentation of undigestible carbohydrates with production of short chain fatty acids), a mucosal barrier function (i.e. by inhibiting pathogen invasion and strengthening epithelial barrier integrity), and an immune modula- tory function (i.e. mucosal immune system priming and maintenance of intestinal epithelium homeostasis). A fine balance regulates the mechanism that allows co- existence of mammals with their commensal bacteria. In IBD this mechanism of immune tolerance is impaired because of several potential causative factors. The gut microbiota composition and activity of IBD patients are abnormal, with a decreased prevalence of dominant members of the human commensal microbiota (i.e. Clostridium IXa and IV groups, Bacteroides, bifldobacteria) and a concomitant increase in detrimental bacteria (i.e. sulphate-reducing bacteria, Escherichia coll. The observed dysbiosis is concomitant with defectiveinnate immunity and bacterial killing (i.e. reduced mucosal defensins and IgA, malfunctioning phagocytosis) and overaggressive adaptive immune response (due to ineffective regulatory T cells and antigen presenting cells), which are considered the basis of IBD pathogen- esis. However, we still do not know how the interplay between these parameters causes the disease. Studies looking at gut microbial composition, epithelial integrity and mucosal immune markers in genotyped IBD populations are therefore warranted to shed light on this obscure pathogenesis.展开更多
基金Project(U1608254)supported by the Special Fund for the National Natural Science Foundation of ChinaProjects(ZJKY2017(B)KFJJ01,ZJKY2017(B)KFJJ02)supported by the Zijin Mining Group Co.,Ltd,China。
文摘To design heap biooxidation process,it is necessary to understand its internal rules.The heap biooxidation of gold ore from Anhui province was researched in this study.The results showed that the main microorganisms in the heap were A.ferrooxidans,F.acidiphilum and L.ferrodiazotrophum.Under their combined action,gold leaching extent rose from 35.62%to 78.08%in 80 d.Boltzmann model matches the actual oxidation effect better and the model equations were obtained.The model predicted that the oxidation extents of arsenic and sulfur are 58.577%and 42.122%after one year,and the gold leaching extent was 80.40%.The arsenic and sulfur oxidation extents,and gold leaching extent were all linearly correlated.It is more reliable to predict gold leaching extent by sulfur oxidation extent.These results provided good guidance for practical application in the actual production.
文摘Inflammatory bowel disease (IBD) arises from disruption of immune tolerance to the gut commensal microbiota, leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts. In healthy individuals the intestinal microbiota have a symbiotic relationship with the host organism and possess important and unique functions, including a metabolic function (i.e. digestion of dietary compounds and xenobiotics, fermentation of undigestible carbohydrates with production of short chain fatty acids), a mucosal barrier function (i.e. by inhibiting pathogen invasion and strengthening epithelial barrier integrity), and an immune modula- tory function (i.e. mucosal immune system priming and maintenance of intestinal epithelium homeostasis). A fine balance regulates the mechanism that allows co- existence of mammals with their commensal bacteria. In IBD this mechanism of immune tolerance is impaired because of several potential causative factors. The gut microbiota composition and activity of IBD patients are abnormal, with a decreased prevalence of dominant members of the human commensal microbiota (i.e. Clostridium IXa and IV groups, Bacteroides, bifldobacteria) and a concomitant increase in detrimental bacteria (i.e. sulphate-reducing bacteria, Escherichia coll. The observed dysbiosis is concomitant with defectiveinnate immunity and bacterial killing (i.e. reduced mucosal defensins and IgA, malfunctioning phagocytosis) and overaggressive adaptive immune response (due to ineffective regulatory T cells and antigen presenting cells), which are considered the basis of IBD pathogen- esis. However, we still do not know how the interplay between these parameters causes the disease. Studies looking at gut microbial composition, epithelial integrity and mucosal immune markers in genotyped IBD populations are therefore warranted to shed light on this obscure pathogenesis.