In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to...In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.展开更多
文摘NO的脱除效率已成为微生物净化燃煤烟气NOx双塔流程的瓶颈。为了提高微生物净化烟气中NO、NOx的效率,分别研究了脱硫塔添加Fe SO4·7H2O、脱氮塔添加Na NO2对微生物净化模拟烟气中NO、NOx效率的影响作用。结果表明:脱硫塔添加0.23 g/L Fe SO4·7H2O,其NO平均脱除率为61.04%,比空白试验的35.31%提高明显;脱硫塔NOx平均脱除率为62.16%,比空白试验的31.10%提高约1倍;双塔NOx平均总脱除率从空白试验的61.8%增至86.9%。浓度梯度试验结果表明:0.23 g/L Fe SO4·7H2O是脱硫塔内较为合适的添加浓度。脱氮塔添加0.50 g/L Na NO2后,脱氮塔NO平均脱除率从空白试验的39.92%提高到52.11%;脱氮塔NOx平均脱除率从空白试验的47.67%增至58.90%;双塔NOx平均总脱除率从空白试验的70.75%增至79.32%。反复多次验证试验均证明:Fe SO4·7H2O和Na NO2的分别添加的确大幅度地强化了烟气中NO、NOx的微生物净化效率。
基金Project supported by the National Science Fund for Distinguished Young Scholars of China (No. 39925007)the Biotechnology section of INCO-DC under the 4th Framework Program of the European Commission(No. ERBIC18CT960059).
文摘In order to investigate the effects of microorganisms and their urease activities in macrophytic root zones on pollutant removal, four small-scale plots (SSPs) of vertical/reverse-vertical flow wetlands were set up to determine: a) the relationship between the abundance of microorganisms in the root zones and water purification efficiency; and b) the relationship between urease activities in the root zones and pollutant removal in a constructed wetland system. Total numbers of the microbial population (bacteria, fungi, and actinomyces) along with urease activities in the macrophytic root zones were determined. In addition, the relationships between microbial populations and urease activities as well as the wastewater purification efficiencies of total phosphorus (TP), total Kjeldahl nitrogen (TKN), biochemical oxygen demand in 5 days (BOD5), and chemical oxygen demand (COD) were also analyzed. The results showed that there was a highly significant positive correlation (r = 0.9772, P < 0.01) between the number of bacteria in the root zones and BOD5 removal efficiency and a significant negative correlation (r = -0.9092, P < 0.05) between the number of fungi and the removal efficiency of TKN. Meanwhile, there was a significant positive correlation (r -- 0.8830, P < 0.05) between urease activities in the root zones and the removal efficiency of TKN. Thus, during wastewater treatment in a constructed wetland system,microorganism and urease activities in the root zones were very important factors.