Microbial community diversities in the drainage from three mines(Dexing Copper Mine,Qibaoshan Copper Mine and Yaogangxian Tungsten Mine,China)were analyzed using 16S rDNA PCR-RFLP approach.The efficiencies of chalcopy...Microbial community diversities in the drainage from three mines(Dexing Copper Mine,Qibaoshan Copper Mine and Yaogangxian Tungsten Mine,China)were analyzed using 16S rDNA PCR-RFLP approach.The efficiencies of chalcopyrite bioleaching were compared using enrichment of the three cultures.Phylogenetic analysis indicates that the dominant microorganisms are clustered with the Proteobacteria,the remaining is affiliated with Nitrospira,Acidobacteria and Actinobacteria.At the genus level,Acidithiobacillus is the dominant group in both YTW and QBS samples,while Spingomonas is dominant in YGX sample.Moreover,the principal component analysis(PCA)reveals that QBS and YTW have similar geochemical character and microbial communities.The results also show that pH value and tungsten concentration play a key role in microbial community distribution and relative abundance.The bioleaching efficiency of the enrichment cultures from YTW and QBS is similar.After 15 d,the bioleaching rates of low grade chalcopyrite(0.99%)are both up to 99.5% when using 10 g/L pulp density due to the similar microbial composition of YTW and QBS.Moreover,the leaching efficiencies of enrichment cultures containing multiple bioleaching microorganisms are higher than that of pure culture Acidithiobacillus ferrooxidans.展开更多
This paper aims at summarized the research progress of soil microbes,in amount of soil microbes including bacteria,fungi and actinomycetes,soil microbial biomass,including microbial biomass carbon,microbial biomass ni...This paper aims at summarized the research progress of soil microbes,in amount of soil microbes including bacteria,fungi and actinomycetes,soil microbial biomass,including microbial biomass carbon,microbial biomass nitrogen and microbial biomass phosphorus,function of microbial and screening and application of beneficial microorganisms etc.,and future research are discussed combined with our project team for many years of work.展开更多
基金Project(50621063) supported by the National Natural Science Foundation of ChinaProject (2004CB619204) supported by the National Basic Research and Development Program of China
文摘Microbial community diversities in the drainage from three mines(Dexing Copper Mine,Qibaoshan Copper Mine and Yaogangxian Tungsten Mine,China)were analyzed using 16S rDNA PCR-RFLP approach.The efficiencies of chalcopyrite bioleaching were compared using enrichment of the three cultures.Phylogenetic analysis indicates that the dominant microorganisms are clustered with the Proteobacteria,the remaining is affiliated with Nitrospira,Acidobacteria and Actinobacteria.At the genus level,Acidithiobacillus is the dominant group in both YTW and QBS samples,while Spingomonas is dominant in YGX sample.Moreover,the principal component analysis(PCA)reveals that QBS and YTW have similar geochemical character and microbial communities.The results also show that pH value and tungsten concentration play a key role in microbial community distribution and relative abundance.The bioleaching efficiency of the enrichment cultures from YTW and QBS is similar.After 15 d,the bioleaching rates of low grade chalcopyrite(0.99%)are both up to 99.5% when using 10 g/L pulp density due to the similar microbial composition of YTW and QBS.Moreover,the leaching efficiencies of enrichment cultures containing multiple bioleaching microorganisms are higher than that of pure culture Acidithiobacillus ferrooxidans.
基金Supported by Scientific and Technological Innovation Project of Gansu Agriculture and Animal Husbandry Bureaus(GNXC-2012-45)National Natural Science Foundation of China(41161049)
文摘This paper aims at summarized the research progress of soil microbes,in amount of soil microbes including bacteria,fungi and actinomycetes,soil microbial biomass,including microbial biomass carbon,microbial biomass nitrogen and microbial biomass phosphorus,function of microbial and screening and application of beneficial microorganisms etc.,and future research are discussed combined with our project team for many years of work.