Microbial electrolysis cells(MECs)present an attractive route for energy-saving hydrogen(H2)production along with treatment of various wastewaters,which can convert organic matter into H2 with the assistance of microb...Microbial electrolysis cells(MECs)present an attractive route for energy-saving hydrogen(H2)production along with treatment of various wastewaters,which can convert organic matter into H2 with the assistance of microbial electrocatalysis.However,the development of such renewable technologies for H2 production still faces considerable challenges regarding how to enhance the H2 production rate and to lower the energy and the system cost.In this review,we will focus on the recent research progress of MEC for H2 production.First,we present a brief introduction of MEC technology and the operating mechanism for H2 production.Then,the electrode materials including some typical electrocatalysts for hydrogen production are summarized and discussed.We also highlight how various substrates used in MEC affect the associated performance of hydrogen generation.Finally we presents several key scientific challenges and our perspectives on how to enhance the electrochemical performance.展开更多
A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was ...A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was evaluated. Wastewater was fed to the upflow ML-MFC to remove chemical oxygen demand (COD), phosphorus and nitrogen with simultaneous electricity generation. The effluent from the cathode compartment of the upflow ML-MFC was then continuously fed to an external photobioreactor for removing the remaining phosphorus and nitrogen using microalgae. Alone, the upflow ML-MFC produces a maximum power density of 481 mW/m 3 , and obtains 77.9% COD, 23.5% total phosphorus (TP) and 97.6% NH4+-N removals. When combined with the photobioreactor, the system achieves 99.3% TP and 99.0% NH4+-N total removal. These results show both the effectiveness and the potential application of the coupled system to continuously treat domestic wastewater and simultaneously generate electricity and biomass.展开更多
Biological activated carbon (BAC) has been developed on the granular activated carbon by immobilization of selected and acclimated species of bacteria to treat the micro-polluted water. The BAC removal efficiencies fo...Biological activated carbon (BAC) has been developed on the granular activated carbon by immobilization of selected and acclimated species of bacteria to treat the micro-polluted water. The BAC removal efficiencies for nitrobenzene, permanganate index, turbidity and ammonia were investigated. Effects of shock loading and SEM (Scanning Electron Microscope) observation on BAC were studied. Backwashing and its intensity of BAC were also discussed. The results showed that BAC took short time to start up and recover to the normal condition after shock loading. The shock loading studies showed that the removal efficiency of BAC was not completely inhibited even at high concentration of nitrobenzene. Backwashing performed once every 10-20 d, or an average of 15 d. Backwashing intensity was 12-14 L/(s·m2) with air and 3-4 L/(s·m2) with water.展开更多
To improve the efficiency of petrochemical wastewater purification, the relationship between bacterial community structure and pollutants loading/degrading rates in A/O process for petrochemical wastewater treatment w...To improve the efficiency of petrochemical wastewater purification, the relationship between bacterial community structure and pollutants loading/degrading rates in A/O process for petrochemical wastewater treatment was investigated by denaturing gradient gel eleetrophoresis (DGGE) of the 16S rRNA gene fragments amplified by polymerase chain reaction (PCR). Results show that while the influent COD and NH4^+ -N concentrations are 425.92 -560 mg/L and 64 - 100 mg/L respectively, the corresponding average concentrations of the effluent are 160 mg/L and 55 mg/L, which are 1. 6 and 3.6 times more than the national standards respectively. It demonstrates that the performance of pollutants removal process is inefficient. The analysis of PCR-DGGE profile indicates that the bacterial community structure of the activated sludge in A/O system is species-rich but unstable, and the highest and the lowest similarity coefficients are 36% and 6. 25% respectively, which shows that remarkable community structure evolution exists in the system. The variation of bacterial community structure and pollutants loading influences the removal efficiency of pollutants obviously, and relatively stable com- munity structure leads to the stable operational performance of biological wastewater treatment system.展开更多
Several microorganisms such as bacteria, fungi, Protozoa, Rotifera, cystic amoeba and algae diagnosed in activated sludge aerobic (Rustumiya treatment plant) and anaerobic reactor. Results have shown a reduction in ...Several microorganisms such as bacteria, fungi, Protozoa, Rotifera, cystic amoeba and algae diagnosed in activated sludge aerobic (Rustumiya treatment plant) and anaerobic reactor. Results have shown a reduction in the turbidity rates when using activated sludge at Rustumiya plant of 76.3 to 2.653 NTU in pre-treatment and final tank respectively, also COD (chemical oxygen demand) amount reduced from 427.263 to 82 mg/L respectively, In addition, concentrations of phosphates and nitrates decreased from 12.083 to 8.426 mg/L and 3.59 to 2.43 mg/L respectively, by removing 30.2% and 32.3% respectively of the final tank. The ratio of ammonia removing was 89.6% for ammonia, reducing process from 1358 to 140 mg/L. Furthermore, sulfates concentration decreased from 30.883 to 23.337 mg/L. However, the system in the anaerobic reactor depends on non-aerated activated sludge. Results show turbidity reduced from 12.5 to 2 NTU in pre-treatment and final tank respectively, also the COD mount reduced from 191 to 130 mg/L, the percentage removal of 31.9%. In addition phosphates, nitrates and sulfates concentrations were decreased by using activated sludge from 17.15 to 8.15, 1.2 to 0.1 and 28 to 9.2 mg/L respectively. The ammonia concentration has reduced from 1.2 to 0. i mg/L where at a removal percentage of 90.9%.展开更多
To find new strain in the microbial fuel cell (MFC) for quinoline removal from wastewater and soil, a facultative anaerobic bacterium strain was isolated from the anode of MFC, utilizing quinoline as the carbon source...To find new strain in the microbial fuel cell (MFC) for quinoline removal from wastewater and soil, a facultative anaerobic bacterium strain was isolated from the anode of MFC, utilizing quinoline as the carbon source and electron donor. Based on the 16S rRNA sequence analysis, the bacterium strain was Gram-negative and identified as Pseudomonas sp. Q1 according to its morphology and physiochemical properties. The strain was inoculated into a double-chambered MFC using various quinoline concentrations (0, 50, 75, 86, 100, 150, 200 and 300 mg L-1 ) combining with 300 mg L-1 glucose as the fuel. Results showed that electricity was generated from the MFC, in which quinoline was degraded simultaneously. The values of Coulombic efficiency (CE) increased with the increase of quinoline concentrations from 0 to 100 mg L-1 then decreased with the increase of quinoline concentration from 100 to 300 mg L-1 , and the maximum CE 36.7% was obtained at the quinoline concentration of 100 mg L-1 . The cyclic voltammetry analysis suggested that the mechanism of electron transfer was through excreting mediators produced by the strain Q1. The MFC should be a potential method for the treatment of quinoline-contaminated water and soil.展开更多
基金supported by the National Natural Science Foundation of China(No.21566025 and No.21875253)the Natural Science Foundation of Jiangxi Province(No.20152ACB21019 and No.20162BCB23044)。
文摘Microbial electrolysis cells(MECs)present an attractive route for energy-saving hydrogen(H2)production along with treatment of various wastewaters,which can convert organic matter into H2 with the assistance of microbial electrocatalysis.However,the development of such renewable technologies for H2 production still faces considerable challenges regarding how to enhance the H2 production rate and to lower the energy and the system cost.In this review,we will focus on the recent research progress of MEC for H2 production.First,we present a brief introduction of MEC technology and the operating mechanism for H2 production.Then,the electrode materials including some typical electrocatalysts for hydrogen production are summarized and discussed.We also highlight how various substrates used in MEC affect the associated performance of hydrogen generation.Finally we presents several key scientific challenges and our perspectives on how to enhance the electrochemical performance.
基金Projects(2009GG10005004, 2010GHY10504) supported by the Scientific and Technological Foundation of Shandong Province,ChinaProject(2011GHY11531) supported by the Science and Technology Development Program of Shandong Province,ChinaProject(ZR2009BM015) supported by the Natural Science Foundation of Shandong Province,China
文摘A coupled system consisting of an upflow membrane-less microbial fuel cell (upflow ML-MFC) and a photobioreactor was developed, and its effectiveness for continuous wastewater treatment and electricity production was evaluated. Wastewater was fed to the upflow ML-MFC to remove chemical oxygen demand (COD), phosphorus and nitrogen with simultaneous electricity generation. The effluent from the cathode compartment of the upflow ML-MFC was then continuously fed to an external photobioreactor for removing the remaining phosphorus and nitrogen using microalgae. Alone, the upflow ML-MFC produces a maximum power density of 481 mW/m 3 , and obtains 77.9% COD, 23.5% total phosphorus (TP) and 97.6% NH4+-N removals. When combined with the photobioreactor, the system achieves 99.3% TP and 99.0% NH4+-N total removal. These results show both the effectiveness and the potential application of the coupled system to continuously treat domestic wastewater and simultaneously generate electricity and biomass.
文摘Biological activated carbon (BAC) has been developed on the granular activated carbon by immobilization of selected and acclimated species of bacteria to treat the micro-polluted water. The BAC removal efficiencies for nitrobenzene, permanganate index, turbidity and ammonia were investigated. Effects of shock loading and SEM (Scanning Electron Microscope) observation on BAC were studied. Backwashing and its intensity of BAC were also discussed. The results showed that BAC took short time to start up and recover to the normal condition after shock loading. The shock loading studies showed that the removal efficiency of BAC was not completely inhibited even at high concentration of nitrobenzene. Backwashing performed once every 10-20 d, or an average of 15 d. Backwashing intensity was 12-14 L/(s·m2) with air and 3-4 L/(s·m2) with water.
基金Sponsored by the National Basic Research and Development (973) Program of China(Grant No.2004CB185050)
文摘To improve the efficiency of petrochemical wastewater purification, the relationship between bacterial community structure and pollutants loading/degrading rates in A/O process for petrochemical wastewater treatment was investigated by denaturing gradient gel eleetrophoresis (DGGE) of the 16S rRNA gene fragments amplified by polymerase chain reaction (PCR). Results show that while the influent COD and NH4^+ -N concentrations are 425.92 -560 mg/L and 64 - 100 mg/L respectively, the corresponding average concentrations of the effluent are 160 mg/L and 55 mg/L, which are 1. 6 and 3.6 times more than the national standards respectively. It demonstrates that the performance of pollutants removal process is inefficient. The analysis of PCR-DGGE profile indicates that the bacterial community structure of the activated sludge in A/O system is species-rich but unstable, and the highest and the lowest similarity coefficients are 36% and 6. 25% respectively, which shows that remarkable community structure evolution exists in the system. The variation of bacterial community structure and pollutants loading influences the removal efficiency of pollutants obviously, and relatively stable com- munity structure leads to the stable operational performance of biological wastewater treatment system.
文摘Several microorganisms such as bacteria, fungi, Protozoa, Rotifera, cystic amoeba and algae diagnosed in activated sludge aerobic (Rustumiya treatment plant) and anaerobic reactor. Results have shown a reduction in the turbidity rates when using activated sludge at Rustumiya plant of 76.3 to 2.653 NTU in pre-treatment and final tank respectively, also COD (chemical oxygen demand) amount reduced from 427.263 to 82 mg/L respectively, In addition, concentrations of phosphates and nitrates decreased from 12.083 to 8.426 mg/L and 3.59 to 2.43 mg/L respectively, by removing 30.2% and 32.3% respectively of the final tank. The ratio of ammonia removing was 89.6% for ammonia, reducing process from 1358 to 140 mg/L. Furthermore, sulfates concentration decreased from 30.883 to 23.337 mg/L. However, the system in the anaerobic reactor depends on non-aerated activated sludge. Results show turbidity reduced from 12.5 to 2 NTU in pre-treatment and final tank respectively, also the COD mount reduced from 191 to 130 mg/L, the percentage removal of 31.9%. In addition phosphates, nitrates and sulfates concentrations were decreased by using activated sludge from 17.15 to 8.15, 1.2 to 0.1 and 28 to 9.2 mg/L respectively. The ammonia concentration has reduced from 1.2 to 0. i mg/L where at a removal percentage of 90.9%.
基金Supported by the National Natural Science Foundation of China (Nos. 51039007 and 51179212)the Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control of China (No. 10K04ESPCT)+2 种基金the Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China (No. 2011K0001)the Guangdong Provincial Program of Production, Teaching and Research (No. 2009B090300324)the Major Projects of Special National Science and Technology of Water (No. 2009ZX07528-001)
文摘To find new strain in the microbial fuel cell (MFC) for quinoline removal from wastewater and soil, a facultative anaerobic bacterium strain was isolated from the anode of MFC, utilizing quinoline as the carbon source and electron donor. Based on the 16S rRNA sequence analysis, the bacterium strain was Gram-negative and identified as Pseudomonas sp. Q1 according to its morphology and physiochemical properties. The strain was inoculated into a double-chambered MFC using various quinoline concentrations (0, 50, 75, 86, 100, 150, 200 and 300 mg L-1 ) combining with 300 mg L-1 glucose as the fuel. Results showed that electricity was generated from the MFC, in which quinoline was degraded simultaneously. The values of Coulombic efficiency (CE) increased with the increase of quinoline concentrations from 0 to 100 mg L-1 then decreased with the increase of quinoline concentration from 100 to 300 mg L-1 , and the maximum CE 36.7% was obtained at the quinoline concentration of 100 mg L-1 . The cyclic voltammetry analysis suggested that the mechanism of electron transfer was through excreting mediators produced by the strain Q1. The MFC should be a potential method for the treatment of quinoline-contaminated water and soil.