AIM: To determine the composition of both fecal and duodenal mucosa-associated microbiota in irritable bowel syndrome (IBS) patients and healthy subjects using molecular-based techniques. METHODS: Fecal and duodenal m...AIM: To determine the composition of both fecal and duodenal mucosa-associated microbiota in irritable bowel syndrome (IBS) patients and healthy subjects using molecular-based techniques. METHODS: Fecal and duodenal mucosa brush samples were obtained from 41 IBS patients and 26 healthy subjects. Fecal samples were analyzed for the composition of the total microbiota using fluorescent in situ hybridization (FISH) and both fecal and duodenal brush samples were analyzed for the composition of bif idobacteria using real-time polymerase chain reaction. RESULTS: The FISH analysis of fecal samples revealed a 2-fold decrease in the level of bifidobacteria (4.2 ± 1.3 vs 8.3 ± 1.9, P < 0.01) in IBS patients compared to healthy subjects, whereas no major differences in other bacterial groups were observed. At the species level, Bifidobacterium catenulatum levels were significantly lower (6 ± 0.6 vs 19 ± 2.5, P < 0.001) in the IBS patients in both fecal and duodenal brush samples than in healthy subjects.CONCLUSION: Decreased bifidobacteria levels in both fecal and duodenal brush samples of IBS patients compared to healthy subjects indicate a role for microbiotic composition in IBS pathophysiology.展开更多
Method development has always been and will continue to be a core driving force of microbiome science, In this perspective, we argue that in the next decade, method development in microbiome analysis will be driven by...Method development has always been and will continue to be a core driving force of microbiome science, In this perspective, we argue that in the next decade, method development in microbiome analysis will be driven by three key changes in both ways of thinking and technological platforms: ① a shift from dissecting microbiota structure by sequencing to tracking microbiota state, function, and intercellular interaction via imaging; ② a shift from interrogating a consortium or population of cells to probing individual cells; and ③a shift from microbiome data analysis to microbiome data science. Some of the recent methoddevelopment efforts by Chinese microbiome scientists and their international collaborators that underlie these technological trends are highlighted here. It is our belief that the China Microbiome Initiative has the opportunity to deliver outstanding "Made-in-China" tools to the international research community, by building an ambitious, competitive, and collaborative program at the forefront of method development for microbiome science.展开更多
In recent years, the sensor array has attracted much attention in the field of complex system analysis on the basis of its good selectivity and easy operation. Many optical colorimetric sensor arrays are designed to a...In recent years, the sensor array has attracted much attention in the field of complex system analysis on the basis of its good selectivity and easy operation. Many optical colorimetric sensor arrays are designed to analyze multi-target analytes due to the good sensitivity of optical signal. In this review, we introduce the targeting analytes, sensing mechanisms and data processing methods of the optical colorimetric sensor array based on optical probes(including organic molecular probes, polymer materials and nanomaterials). The research progress in the detection of metal ions, anions, toxic gases, organic compounds, biomolecules and living organisms(such as DNA, amino acids, proteins, microbes and cells) and actual sample mixtures are summarized here.The review illustrates the types, application advantages and development prospects of the optical colorimetric sensor array to help broad readers to understand the research progress in the application of chemical sensor array.展开更多
Using high-throughput sequencing on metagenome to analyze marine microbial community, it is one of current main issues in the field of environmental microbe research. In this paper, we conducted the functional analysi...Using high-throughput sequencing on metagenome to analyze marine microbial community, it is one of current main issues in the field of environmental microbe research. In this paper, we conducted the functional analysis on seven samples of metagenomic data from different depth seawater in Hawaii. The results of gene prediction and function annotation indicate that there are large amounts of potential novel genes of which functions remain unknown at present. Based on the gene annotation, codon usage bias is studied on ribosomal protein-related genes and shows an evident influence by the marine extreme environment. Furthermore, focusing on the marine environmental differences such as light intensity, dissolved oxygen, temperature and pressure among various depths, comparative analysis is carried out on related genes and metabolic pathways. Thus, the understanding as well as new insights into the correlation between marine environment and microbes are proposed at molecular level. Therefore, the studies herein afford a clue to reveal the special living strategies of microbial community from sea surface to deep sea.展开更多
文摘AIM: To determine the composition of both fecal and duodenal mucosa-associated microbiota in irritable bowel syndrome (IBS) patients and healthy subjects using molecular-based techniques. METHODS: Fecal and duodenal mucosa brush samples were obtained from 41 IBS patients and 26 healthy subjects. Fecal samples were analyzed for the composition of the total microbiota using fluorescent in situ hybridization (FISH) and both fecal and duodenal brush samples were analyzed for the composition of bif idobacteria using real-time polymerase chain reaction. RESULTS: The FISH analysis of fecal samples revealed a 2-fold decrease in the level of bifidobacteria (4.2 ± 1.3 vs 8.3 ± 1.9, P < 0.01) in IBS patients compared to healthy subjects, whereas no major differences in other bacterial groups were observed. At the species level, Bifidobacterium catenulatum levels were significantly lower (6 ± 0.6 vs 19 ± 2.5, P < 0.001) in the IBS patients in both fecal and duodenal brush samples than in healthy subjects.CONCLUSION: Decreased bifidobacteria levels in both fecal and duodenal brush samples of IBS patients compared to healthy subjects indicate a role for microbiotic composition in IBS pathophysiology.
基金We are grateful to the support from the National Natural Science Foundation of China (NSFC) (31425002, 91231205, 81430011, 61303161, 31470220, and 31327001), and the Frontier Science Research Program, the Soil-Microbe System Function and Regulation Program, and the Science and Technology Service Network Initiative (STS) from the Chinese Academy of Sciences (CAS).
文摘Method development has always been and will continue to be a core driving force of microbiome science, In this perspective, we argue that in the next decade, method development in microbiome analysis will be driven by three key changes in both ways of thinking and technological platforms: ① a shift from dissecting microbiota structure by sequencing to tracking microbiota state, function, and intercellular interaction via imaging; ② a shift from interrogating a consortium or population of cells to probing individual cells; and ③a shift from microbiome data analysis to microbiome data science. Some of the recent methoddevelopment efforts by Chinese microbiome scientists and their international collaborators that underlie these technological trends are highlighted here. It is our belief that the China Microbiome Initiative has the opportunity to deliver outstanding "Made-in-China" tools to the international research community, by building an ambitious, competitive, and collaborative program at the forefront of method development for microbiome science.
基金supported by Beijing Natural Science Foundation (L172018)the National Natural Science Foundation of China (21575032, 21775010, 81728010)+1 种基金the Fundamental Research Funds for the Central Universities (PYBZ1707, buctrc201607, PT1801)Open Ground from Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences
文摘In recent years, the sensor array has attracted much attention in the field of complex system analysis on the basis of its good selectivity and easy operation. Many optical colorimetric sensor arrays are designed to analyze multi-target analytes due to the good sensitivity of optical signal. In this review, we introduce the targeting analytes, sensing mechanisms and data processing methods of the optical colorimetric sensor array based on optical probes(including organic molecular probes, polymer materials and nanomaterials). The research progress in the detection of metal ions, anions, toxic gases, organic compounds, biomolecules and living organisms(such as DNA, amino acids, proteins, microbes and cells) and actual sample mixtures are summarized here.The review illustrates the types, application advantages and development prospects of the optical colorimetric sensor array to help broad readers to understand the research progress in the application of chemical sensor array.
基金supported by the National ‘‘Twelfth Five-Year’’ Plan for Science and Technology of China(2012BAI06B02)the National Natural Science Foundation of China(91231119, 30970667 and 11021463)the National Basic Research Program of China (2011CB707500)
文摘Using high-throughput sequencing on metagenome to analyze marine microbial community, it is one of current main issues in the field of environmental microbe research. In this paper, we conducted the functional analysis on seven samples of metagenomic data from different depth seawater in Hawaii. The results of gene prediction and function annotation indicate that there are large amounts of potential novel genes of which functions remain unknown at present. Based on the gene annotation, codon usage bias is studied on ribosomal protein-related genes and shows an evident influence by the marine extreme environment. Furthermore, focusing on the marine environmental differences such as light intensity, dissolved oxygen, temperature and pressure among various depths, comparative analysis is carried out on related genes and metabolic pathways. Thus, the understanding as well as new insights into the correlation between marine environment and microbes are proposed at molecular level. Therefore, the studies herein afford a clue to reveal the special living strategies of microbial community from sea surface to deep sea.