期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一个微生物细胞图像自动判读系统的实现 被引量:2
1
作者 刘相滨 邹北骥 阳波 《计算机工程与应用》 CSCD 北大核心 2002年第7期125-126,158,共3页
不同类的微生物细胞其形态各异,这给微生物细胞图像自动判读系统的实现带来了很大的困难。该文介绍了一个自动判读系统的实现,该系统包含丰富的图像分析处理算法函数,提供了非常灵活的处理宏定义,能够对细胞图像自动分类,然后根据其所... 不同类的微生物细胞其形态各异,这给微生物细胞图像自动判读系统的实现带来了很大的困难。该文介绍了一个自动判读系统的实现,该系统包含丰富的图像分析处理算法函数,提供了非常灵活的处理宏定义,能够对细胞图像自动分类,然后根据其所属的类调用相应的判读宏完成判读。 展开更多
关键词 微生物细胞图像 自动判读系统 生物医学 图像处理
下载PDF
Automatic cell object extraction of red tide algae in microscopic images
2
作者 于堃 姬光荣 郑海永 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第2期275-293,共19页
Extracting the cell objects of red tide algae is the most important step in the construction of an automatic microscopic image recognition system for harmful algal blooms.This paper describes a set of composite method... Extracting the cell objects of red tide algae is the most important step in the construction of an automatic microscopic image recognition system for harmful algal blooms.This paper describes a set of composite methods for the automatic segmentation of cells of red tide algae from microscopic images.Depending on the existence of setae,we classify the common marine red tide algae into non-setae algae species and Chaetoceros,and design segmentation strategies for these two categories according to their morphological characteristics.In view of the varied forms and fuzzy edges of non-setae algae,we propose a new multi-scale detection algorithm for algal cell regions based on border-correlation,and further combine this with morphological operations and an improved GrabCut algorithm to segment single-cell and multicell objects.In this process,similarity detection is introduced to eliminate the pseudo cellular regions.For Chaetoceros,owing to the weak grayscale information of their setae and the low contrast between the setae and background,we propose a cell extraction method based on a gray surface orientation angle model.This method constructs a gray surface vector model,and executes the gray mapping of the orientation angles.The obtained gray values are then reconstructed and linearly stretched.Finally,appropriate morphological processing is conducted to preserve the orientation information and tiny features of the setae.Experimental results demonstrate that the proposed methods can effectively remove noise and accurately extract both categories of algae cell objects possessing a complete shape,regular contour,and clear edge.Compared with other advanced segmentation techniques,our methods are more robust when considering images with different appearances and achieve more satisfactory segmentation effects. 展开更多
关键词 non-setae algae CHAETOCEROS cell extraction border-correlation non-interactive GrabCut
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部