MoS_(2)/CuS composite catalysts were successfully synthesized using a one-step hydrothermal method with sodium molybdate dihydrate,thiourea,oxalic acid,and copper nitrate trihydrate as raw materials.The hydrogen pro-d...MoS_(2)/CuS composite catalysts were successfully synthesized using a one-step hydrothermal method with sodium molybdate dihydrate,thiourea,oxalic acid,and copper nitrate trihydrate as raw materials.The hydrogen pro-duction performance of MoS_(2)/CuS prepared with different molar ratios of Mo to Cu precursors(n_(Mo)∶n_(Cu))as cathodic catalysts was investigated in the two-chamber microbial electrolytic cell(MEC).X-ray diffraction(XRD),X-ray pho-toelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscope(TEM),linear scanning voltammetry(LSV),electrochemical impedance analysis(EIS),and cyclic voltammetry(CV)were used to characterize the synthesized catalysts for testing and analyzing the hydrogen-producing performance.The results showed that the hydrogen evolution performance of MoS_(2)/CuS-20%(nMo∶nCu=5∶1)was better than that of platinum(Pt)mesh,and the hydrogen production rate of MoS_(2)/CuS-20%as a cathode in MEC was(0.2031±0.0237)m^(3)_(H_(2))·m^(-3)·d^(-1) for 72 h at an applied voltage of 0.8 V,which was slightly higher than that of Pt mesh of(0.1886±0.0134)m^(3)_(H_(2))·m^(-3)·d^(-1).The addition of a certain amount of CuS not only regulates the electron transfer ability of MoS_(2) but also increases the density of active sites.展开更多
Di-n-butyl phthalate (DBP),one of phthalate acid esters (PAEs),was investigated to determine its biodegradation rate using Xiangjiang River sediment and find potential DBP degraders in the enrichment culture of the se...Di-n-butyl phthalate (DBP),one of phthalate acid esters (PAEs),was investigated to determine its biodegradation rate using Xiangjiang River sediment and find potential DBP degraders in the enrichment culture of the sediment. The sediment sample was incubated with an initial concentration of DBP of 100 mg/L for 5 d. The biodegradation rate of DBP was detected using HPLC and the degraded products were analyzed by GC/MS. Subsequently,the microbial diversity of the enrichment culture was analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results reveal that almost 100% of DBP is degraded after merely 3 d,generating two main degraded products:mono-butyl phthalate (MBP) and 9-octadecenoic acid. After a six-month enrichment period under the pressure of DBP,the dominant family in the final enrichment culture is clustered with the Comamonas sp.,the remaining are affiliated with Sphingomonas sp.,Hydrogenophaga sp.,Rhizobium sp.,and Acidovorax sp. The results show the potential of these bacteria to be used in the bioremediation of DBP in the environment.展开更多
文摘MoS_(2)/CuS composite catalysts were successfully synthesized using a one-step hydrothermal method with sodium molybdate dihydrate,thiourea,oxalic acid,and copper nitrate trihydrate as raw materials.The hydrogen pro-duction performance of MoS_(2)/CuS prepared with different molar ratios of Mo to Cu precursors(n_(Mo)∶n_(Cu))as cathodic catalysts was investigated in the two-chamber microbial electrolytic cell(MEC).X-ray diffraction(XRD),X-ray pho-toelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscope(TEM),linear scanning voltammetry(LSV),electrochemical impedance analysis(EIS),and cyclic voltammetry(CV)were used to characterize the synthesized catalysts for testing and analyzing the hydrogen-producing performance.The results showed that the hydrogen evolution performance of MoS_(2)/CuS-20%(nMo∶nCu=5∶1)was better than that of platinum(Pt)mesh,and the hydrogen production rate of MoS_(2)/CuS-20%as a cathode in MEC was(0.2031±0.0237)m^(3)_(H_(2))·m^(-3)·d^(-1) for 72 h at an applied voltage of 0.8 V,which was slightly higher than that of Pt mesh of(0.1886±0.0134)m^(3)_(H_(2))·m^(-3)·d^(-1).The addition of a certain amount of CuS not only regulates the electron transfer ability of MoS_(2) but also increases the density of active sites.
基金Project(50621063) supported by the National Nature Science Foundation of ChinaProject(NCET-06-0691) supported by the Program for New Century Excellent Talents in University
文摘Di-n-butyl phthalate (DBP),one of phthalate acid esters (PAEs),was investigated to determine its biodegradation rate using Xiangjiang River sediment and find potential DBP degraders in the enrichment culture of the sediment. The sediment sample was incubated with an initial concentration of DBP of 100 mg/L for 5 d. The biodegradation rate of DBP was detected using HPLC and the degraded products were analyzed by GC/MS. Subsequently,the microbial diversity of the enrichment culture was analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results reveal that almost 100% of DBP is degraded after merely 3 d,generating two main degraded products:mono-butyl phthalate (MBP) and 9-octadecenoic acid. After a six-month enrichment period under the pressure of DBP,the dominant family in the final enrichment culture is clustered with the Comamonas sp.,the remaining are affiliated with Sphingomonas sp.,Hydrogenophaga sp.,Rhizobium sp.,and Acidovorax sp. The results show the potential of these bacteria to be used in the bioremediation of DBP in the environment.