期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于微生物遗传算法的贝叶斯网络结构学习 被引量:4
1
作者 武梦娇 刘继 《重庆科技学院学报(自然科学版)》 CAS 2020年第6期70-74,共5页
针对贝叶斯网络结构学习算法的学习效率低、容易陷入局部最优等问题,提出一种改进算法(MIC-MGA)。首先,利用最大信息系数得到初始种群;然后,利用微生物遗传算法中的选择、交叉和变异操作算子对初始种群进行优化。在学习过程中将贝叶斯... 针对贝叶斯网络结构学习算法的学习效率低、容易陷入局部最优等问题,提出一种改进算法(MIC-MGA)。首先,利用最大信息系数得到初始种群;然后,利用微生物遗传算法中的选择、交叉和变异操作算子对初始种群进行优化。在学习过程中将贝叶斯信息准则作为适应度函数,通过学习训练得到最终的贝叶斯网络结构。实验结果表明,对于小样本数据,新算法的学习性能较好,通过学习获得的网络结构更接近真实网络。 展开更多
关键词 微生物遗传算法 贝叶斯网络 结构学习 最大信息系数
下载PDF
基于改进野狗优化算法优化极限学习机的空调负荷预测方法
2
作者 代广超 吴维敏 《制冷与空调(四川)》 2024年第3期320-329,共10页
针对目前短期空调负荷预测方法预测精度低、稳定性差等问题,提出一种基于微生物遗传算法(Microbial genetic algorithm,MGA)和野狗优化算法(Dingo optimization algorithm,DOA)优化极限学习机(Extreme learning machine,ELM)的空调负荷... 针对目前短期空调负荷预测方法预测精度低、稳定性差等问题,提出一种基于微生物遗传算法(Microbial genetic algorithm,MGA)和野狗优化算法(Dingo optimization algorithm,DOA)优化极限学习机(Extreme learning machine,ELM)的空调负荷预测模型。首先利用DOA优化ELM的输入权值和隐层阈值,建立DOA-ELM预测模型,利用MGA改进DOA-ELM模型的预测稳定性和预测精度,建立(Microbial genetic algorithm Dingo optimization algorithm-Extreme learning machine)MDOA-ELM预测模型。为降低预测模型的维度,通过灰色关联分析(GRA)筛选影响空调负荷的输入输出因素。为验证算法有效性,以某工厂中央空调系统为例进行实例分析。实验结果表明,所建负荷预测模型相较于对比模型预测精度高,稳定性好,因此可更好地满足工程实际需求。 展开更多
关键词 负荷预测 微生物遗传算法 野狗优化算法 极限学习机 灰色关联分析
下载PDF
基于MGA-PSO的云计算多目标任务调度 被引量:10
3
作者 孙长亚 王向文 《计算机应用与软件》 北大核心 2021年第6期212-218,共7页
为了提高云计算任务调度的效率,将微生物遗传算法(MGA)和改进的粒子群算法(PSO)融合成MGA-PSO算法用于云计算任务调度。综合任务完工时间、任务执行成本及虚拟机负载均衡三个目标构造适应度函数,以此寻找任务调度的最优解;对粒子群算法... 为了提高云计算任务调度的效率,将微生物遗传算法(MGA)和改进的粒子群算法(PSO)融合成MGA-PSO算法用于云计算任务调度。综合任务完工时间、任务执行成本及虚拟机负载均衡三个目标构造适应度函数,以此寻找任务调度的最优解;对粒子群算法进行改进,使用动态惯性权重策略以提高算法的自适应搜索能力;在任务调度前期使用MGA算法缩小求解空间,在任务调度后期使用改进的PSO快速收敛到最优解。仿真实验表明:与其他三种算法相比,该算法有较快的收敛速度和较强的寻优能力;在云计算任务调度中,不仅能减少任务完工时间和执行成本,还能优化虚拟机的负载。 展开更多
关键词 云计算 任务调度 微生物遗传算法 粒子群算法 多目标
下载PDF
Multi-objective steady-state optimization of two-chamber microbial fuel cells 被引量:1
4
作者 Ke Yang Yijun He Zifeng Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1000-1012,共13页
A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and was... A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and waste removal ratio,are often conflicting.A thorough understanding of the relationship among these three conflicting objectives can be greatly helpful to assist in optimal operation of MFC system.In this study,a multiobjective genetic algorithm is used to simultaneously maximizing power density,attainable current density and waste removal ratio based on a mathematical model for an acetate two-chamber MFC.Moreover,the level diagrams method is utilized to aid in graphical visualization of Pareto front and decision making.Three biobjective optimization problems and one three-objective optimization problem are thoroughly investigated.The obtained Pareto fronts illustrate the complex relationships among these three objectives,which is helpful for final decision support.Therefore,the integrated methodology of a multi-objective genetic algorithm and a graphical visualization technique provides a promising tool for the optimal operation of MFCs by simultaneously considering multiple conflicting objectives. 展开更多
关键词 Microbial fuel cell Multi-objective optimization Genetic algorithm Level diagrams Pareto front
下载PDF
Inhibition of Microbial Growth by Anilines: A QSAR Study
5
作者 Ahmed Bouaoune Leila Lourici Hamza Haddag Djelloul Messadi 《Journal of Environmental Science and Engineering(A)》 2012年第5期663-671,共9页
The relative toxicity of 48 anilines using the Tetrahymena pyriformis population growth characteristics IGC50 (concentration causing 50% growth inhibition), available in the literature, was studied. At first, the en... The relative toxicity of 48 anilines using the Tetrahymena pyriformis population growth characteristics IGC50 (concentration causing 50% growth inhibition), available in the literature, was studied. At first, the entire data set was randomly split into a training set (31 chemicals) used to establish the QSAR model, and a test set (17 chemicals) for statistical external validation. A biparametric model was developed using, as independent variables, 3D theoretical descriptors derived from DRAGON software. The GA-MLR (genetic algorithm variable subset selection) procedure was performed on the trainingset by the software mobydigs using the OLS (ordinary least squares) regression method, and GA(genetic algorithm)-VSS(variable subset selection) by maximising the cross-validated explained variance (Q^2Loo)' The obtained model was examined for robustness (Q^2LOOcross-validation, Y-scrambling) and predictive ability through both internal (Q^2LM0, bootstrap) and external validation (Q^2ext) methods. Descriptors included in the QSAR model indicated that log/GC^-150 value was related to molecular size and shape, and interaction of molecule with its surrounding medium or its target. Moreover, the applicability domain of the model was discussed. 展开更多
关键词 Toxic agents growth of microbial species QSAR hybrid model statistical external validation applicability domain.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部