A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and was...A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and waste removal ratio,are often conflicting.A thorough understanding of the relationship among these three conflicting objectives can be greatly helpful to assist in optimal operation of MFC system.In this study,a multiobjective genetic algorithm is used to simultaneously maximizing power density,attainable current density and waste removal ratio based on a mathematical model for an acetate two-chamber MFC.Moreover,the level diagrams method is utilized to aid in graphical visualization of Pareto front and decision making.Three biobjective optimization problems and one three-objective optimization problem are thoroughly investigated.The obtained Pareto fronts illustrate the complex relationships among these three objectives,which is helpful for final decision support.Therefore,the integrated methodology of a multi-objective genetic algorithm and a graphical visualization technique provides a promising tool for the optimal operation of MFCs by simultaneously considering multiple conflicting objectives.展开更多
The relative toxicity of 48 anilines using the Tetrahymena pyriformis population growth characteristics IGC50 (concentration causing 50% growth inhibition), available in the literature, was studied. At first, the en...The relative toxicity of 48 anilines using the Tetrahymena pyriformis population growth characteristics IGC50 (concentration causing 50% growth inhibition), available in the literature, was studied. At first, the entire data set was randomly split into a training set (31 chemicals) used to establish the QSAR model, and a test set (17 chemicals) for statistical external validation. A biparametric model was developed using, as independent variables, 3D theoretical descriptors derived from DRAGON software. The GA-MLR (genetic algorithm variable subset selection) procedure was performed on the trainingset by the software mobydigs using the OLS (ordinary least squares) regression method, and GA(genetic algorithm)-VSS(variable subset selection) by maximising the cross-validated explained variance (Q^2Loo)' The obtained model was examined for robustness (Q^2LOOcross-validation, Y-scrambling) and predictive ability through both internal (Q^2LM0, bootstrap) and external validation (Q^2ext) methods. Descriptors included in the QSAR model indicated that log/GC^-150 value was related to molecular size and shape, and interaction of molecule with its surrounding medium or its target. Moreover, the applicability domain of the model was discussed.展开更多
基金Supported by the National Natural Science Foundation of China(21576163)the Major State Basic Research Development Program of China(2014CB239703)+1 种基金the Science and Technology Commission of Shanghai Municipality(14DZ2250800)the Project-sponsored by SRF for ROCS,SEM
文摘A microbial fuel cell(MFC)is a novel promising technology for simultaneous renewable electricity generation and wastewater treatment.Three non-comparable objectives,i.e.power density,attainable current density and waste removal ratio,are often conflicting.A thorough understanding of the relationship among these three conflicting objectives can be greatly helpful to assist in optimal operation of MFC system.In this study,a multiobjective genetic algorithm is used to simultaneously maximizing power density,attainable current density and waste removal ratio based on a mathematical model for an acetate two-chamber MFC.Moreover,the level diagrams method is utilized to aid in graphical visualization of Pareto front and decision making.Three biobjective optimization problems and one three-objective optimization problem are thoroughly investigated.The obtained Pareto fronts illustrate the complex relationships among these three objectives,which is helpful for final decision support.Therefore,the integrated methodology of a multi-objective genetic algorithm and a graphical visualization technique provides a promising tool for the optimal operation of MFCs by simultaneously considering multiple conflicting objectives.
文摘The relative toxicity of 48 anilines using the Tetrahymena pyriformis population growth characteristics IGC50 (concentration causing 50% growth inhibition), available in the literature, was studied. At first, the entire data set was randomly split into a training set (31 chemicals) used to establish the QSAR model, and a test set (17 chemicals) for statistical external validation. A biparametric model was developed using, as independent variables, 3D theoretical descriptors derived from DRAGON software. The GA-MLR (genetic algorithm variable subset selection) procedure was performed on the trainingset by the software mobydigs using the OLS (ordinary least squares) regression method, and GA(genetic algorithm)-VSS(variable subset selection) by maximising the cross-validated explained variance (Q^2Loo)' The obtained model was examined for robustness (Q^2LOOcross-validation, Y-scrambling) and predictive ability through both internal (Q^2LM0, bootstrap) and external validation (Q^2ext) methods. Descriptors included in the QSAR model indicated that log/GC^-150 value was related to molecular size and shape, and interaction of molecule with its surrounding medium or its target. Moreover, the applicability domain of the model was discussed.