A simple theoretical model based on plasma physics is presented to analyze the microwave plasma effects on the electronic circuits.Results show that under certain parameter conditions the threshold for damaging the el...A simple theoretical model based on plasma physics is presented to analyze the microwave plasma effects on the electronic circuits.Results show that under certain parameter conditions the threshold for damaging the electronic circuits decreases with the decrease of the frequency of the high-power microwave.In addition,the oscillation amplitudes of the plasma electrons increase dramatically when the plasma frequency is near the high-power microwave frequency, which can easily damage the electronic circuits.展开更多
In this work, lanthanide doped zinc oxide nanoparticles synthesized in room-temperature ionic liquid via a sonochemical method have been studied. Firstly, the cavitation bubble temperatures in 1-butyl-3-methylimidazol...In this work, lanthanide doped zinc oxide nanoparticles synthesized in room-temperature ionic liquid via a sonochemical method have been studied. Firstly, the cavitation bubble temperatures in 1-butyl-3-methylimidazolium hexafluorophosphate (ImPF6) have been estimated by the methyl radical recombination method. The temperatures measured in ImPF6 are in the range of 3000-4000 K. Secondly, a facile method has been proposed to prepare lanthanide (Ⅲ) doped zinc oxide nanoparticles in ImPF6 via an ultrasonic irradiation. The nanomaterials are studied by transmission electron microscopy, X-ray diffraction, photoacoustic and luminescence techniques. The results show that the relaxation processes of the samples depend strongly on the lanthanide doping. Moreover, a mechanism is proposed to interpret the formation of lanthanide (Ⅲ) doped zinc oxide nanoparticles in the ImPF6 upon ultrasonic irradiation.展开更多
文摘A simple theoretical model based on plasma physics is presented to analyze the microwave plasma effects on the electronic circuits.Results show that under certain parameter conditions the threshold for damaging the electronic circuits decreases with the decrease of the frequency of the high-power microwave.In addition,the oscillation amplitudes of the plasma electrons increase dramatically when the plasma frequency is near the high-power microwave frequency, which can easily damage the electronic circuits.
基金supported by the National Natural Science Foundation of China(Grant Nos. 11074127, 11211140039 and 11074125)
文摘In this work, lanthanide doped zinc oxide nanoparticles synthesized in room-temperature ionic liquid via a sonochemical method have been studied. Firstly, the cavitation bubble temperatures in 1-butyl-3-methylimidazolium hexafluorophosphate (ImPF6) have been estimated by the methyl radical recombination method. The temperatures measured in ImPF6 are in the range of 3000-4000 K. Secondly, a facile method has been proposed to prepare lanthanide (Ⅲ) doped zinc oxide nanoparticles in ImPF6 via an ultrasonic irradiation. The nanomaterials are studied by transmission electron microscopy, X-ray diffraction, photoacoustic and luminescence techniques. The results show that the relaxation processes of the samples depend strongly on the lanthanide doping. Moreover, a mechanism is proposed to interpret the formation of lanthanide (Ⅲ) doped zinc oxide nanoparticles in the ImPF6 upon ultrasonic irradiation.