In order to increase the electrode surface area and enhance the charge storage capacity, we study the micro electro mechanical system technology to fabricate three-dimensional high aspect ratio micro-electrode structu...In order to increase the electrode surface area and enhance the charge storage capacity, we study the micro electro mechanical system technology to fabricate three-dimensional high aspect ratio micro-electrode structure based on glass. The anodic constant potential method is employed to deposit manganese oxide as electroactive substances on the micro-electrode surface. Cyclic voltammetry and constant current charge-discharge method are both used to prepare electrode electrochemical performance testing, with a two-dimensional electrode without structure for comparison. Experimental results show that three-dimensional elec- trode structure can effectively enhance the charge storage capacity. At 1.0 mA/cm2 charge- discharge density, the three-dimensional electrode shows a capacitance of 17.88 mF/cm2, seven times higher than the two-dimensional electrode.展开更多
On account of the multiformity of MEMS devices, it is necessary to integrate with some optical measurement techniques for meeting static and dynamic unit test requirements. In this paper, an automated MEMS test system...On account of the multiformity of MEMS devices, it is necessary to integrate with some optical measurement techniques for meeting static and dynamic unit test requirements. In this paper, an automated MEMS test system is built of some commercially available components and instruments based on virtual instrument technology. The system is integrated with stroboscopic imaging, computer micro-vision, microscopic Mirau phase shifting interferometry, and laser Doppler vibrometer, and is used for the measurement of full-view in-plane and out-of-plane geometric parameters and periodical motions and single spot out-of-plane transient motion. The system configuration and measurement methods are analyzed, and some applications of the measurement of in-plane and out-of-plane dimensions and motions were described. The measurement accuracy of in-plane dimensions and out-of-plane dimensional is better than 0.2 um and 5 nm respectively. The resolution of measuring in-plane and out-of-plane motions is better than 15 nm and 2 nm respectively.展开更多
Currently, the monitoring of bridges in China heavily relies on manual operation, which has several major problems. It generally takes a very long time to complete an inspection process on bridges. The manual data is ...Currently, the monitoring of bridges in China heavily relies on manual operation, which has several major problems. It generally takes a very long time to complete an inspection process on bridges. The manual data is sometimes unreliable or even wrong in the case of careless operation. The inspection activity itself is dangerous for inspectors, e.g., bridges are located in the sea or river. Some semi-automatic monitoring methods are recently employed, but they are either very expensive or do not work properly. Therefore, the traditional bridge monitoring process becomes an increasing challenge for bridge operators. In this paper, a real-time and automatic bridge monitoring system is presented to meet the bridge monitoring needs, and MEMS (Micro Electro Mechanical Systems) are the key building block in this system. By using the MEMS-based sensors, it is much more efficient and accurate in monitoring bridges with the measurement of inclination, acceleration, displacement, moisture, temperature, stress and other data.展开更多
This study describes a novel micro proton exchange membrane fuel cell(PEMFC)(active area,2.5 cm2).The flow field plate is manufactured by applying micro-electromechanical systems(MEMS) technology to silicon substrates...This study describes a novel micro proton exchange membrane fuel cell(PEMFC)(active area,2.5 cm2).The flow field plate is manufactured by applying micro-electromechanical systems(MEMS) technology to silicon substrates to etch flow channels without a gold-coating.Therefore,this investigation used MEMS technology for fabrication of a flow field plate and presents a novel fabrication procedure.Various operating parameters,such as fuel temperature and fuel stoichiometric flow rate,are tested to optimize micro PEMFC performance.A single micro PEMFC using MEMS technology reveals the ideal performance of the proposed fuel cell.The optimal power density approaches 232.75 mW·cm-1 when the fuel cell is operated at ambient condition with humidified,heated fuel.展开更多
In this work, new composite membranes were successfully prepared via phase inversion technique using polyvinyl chloride(PVC) and polyvinylpyrrolidone(PVP) as polymers and tetrahydrofuran(THF) and N-methyl-2-pyrrolidon...In this work, new composite membranes were successfully prepared via phase inversion technique using polyvinyl chloride(PVC) and polyvinylpyrrolidone(PVP) as polymers and tetrahydrofuran(THF) and N-methyl-2-pyrrolidone(NMP) as solvents. The prepared membranes have been characterized by scanning electron microscope(SEM), and fourier transforms infrared spectroscopy(FTIR). The scanning electron microscope results prove that the prepared membranes are smooth and their pores are distributed throughout the whole surface and bulk body of the membrane without any visible cracks. The stress–strain mechanical test showed an excellent mechanical behavior enhanced by the presence of PVP in the prepared membranes. The membranes performance results showed that the salt rejection reached 98% with a high flux. This, in turn, makes the prepared membranes can be applied for sea and brackish water treatment through membrane distillation technology.展开更多
In this paper, we conduct research on the development of mechanical and electrical integration of system function principle and related technologies. Along with the rapid and continuous development of modem science an...In this paper, we conduct research on the development of mechanical and electrical integration of system function principle and related technologies. Along with the rapid and continuous development of modem science and technology, it ' s for the penetration and cross of different subjects great push, the more important is caused by technological revolution in the field of engineering and mechanical engineering field under the rapid development of computer technology and microelectronic technology and penetration to the mechanical and electrical integration, which is formed by the mechanical industry lead to trigger a particularly large changes in the mechanical industry management system and mode of production, product and technical structure, composition and function, thus result in industrial production from the previous mechanical electrification progressively electromechanical integration which lead the trend of the current technology.展开更多
Silicon deep etching technique is the key fabrication step in the development of MEMS. The mask selectivity and the lateral etching control are the two primary factors that decide the result of deep etching process. T...Silicon deep etching technique is the key fabrication step in the development of MEMS. The mask selectivity and the lateral etching control are the two primary factors that decide the result of deep etching process. These two factors are studied in this paper. The experimental results show that the higher selectivity can be gotten when F - gas is used as etching gas and Al is introduced as mask layer. The lateral etching problems can be solved by adjusting the etching condition, such as increasing the RF power, changing the gas composition and flow volume of etching machine.展开更多
A novel MEMS device boning system is presented. Aiming at the high velocity, high precision and high flexibility requirements, a novel manipulator of planar parallel structure is developed to substitute ordinary X-Y t...A novel MEMS device boning system is presented. Aiming at the high velocity, high precision and high flexibility requirements, a novel manipulator of planar parallel structure is developed to substitute ordinary X-Y table. In addition, the machine vision is implemented to improve the system' s flexibility. The initial angular positions of the joints are estimated by the extended Kalman filter algorithm. As a resuh, the manipulator's absolute locating accuracy in its workspace is guaranteed indirectly. For any MEMS device, the bonding system itself can be used as measurement equipment to create the device' s geometry model, which is the base to do off-line programming. A quite ideal trade-off between the system' s flexibility and efficiency is got. Finally, some verified motion specification of the manipulator, the bonding experimental results and the verified qualities of the bonded devices are provided.展开更多
Nowadays, electronic devices are more and more integrated into everyday life. These seamless integrations focus on mobility, but at the same time strive to be unobtrusive to the end user. With the introduction of pers...Nowadays, electronic devices are more and more integrated into everyday life. These seamless integrations focus on mobility, but at the same time strive to be unobtrusive to the end user. With the introduction of personal data assistants and intelligent cellular phones for the searching of the website, true mobile computing is closer than ever. However, battery technology, which powers most of these mobile connectivity solutions, has not kept up the same pace of improvement. The paper describes a methodology for the design and performance of a self-excited permanent-magnet generator applied to low power supplies. It combines an analytical field model, a lumped reluctance equivalent magnetic circuit, and an equivalent electrical circuit. An illustrated example of a 15-mW, 290-r/min generator is given, and the analysis techniques are validated by measurements on a prototype system.展开更多
micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smal...micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smaller nanosatellites with higher performance and longer lifecyele. The power consumption of MEMS devices is usually much lower than that of traditional devices, which will greatly reduce the consumption of power. For its small size and simple architecture, MEMS devices can be easily integrated together and achieve redundancy. Launched on April 18, 2004, NS - 1 is a nanosatellite for science exploration and MEMS devices test. A mass of science data and images were acquired during its running. NS - 1 weights less than 25 kg. It consists of several MEMS devices, including one miniature inertial measurement unit(MIMU) , three micro complementary metal oxide semiconductor (CMOS)cameras, one sun sensor, three momentum wheels, and one micro magnetic sensor. By applying micro components based on MEMS technology, NS - 1 has made success in the experiments of integrative design, manufacture, and MEMS devices integration. In this paper, some MEMS devices for nanosatellite and picosatellite are introduced, which have been tested on NS -1 nanosatellite or on the ground.展开更多
Dicing of fabricated MEMS (microelectromechanical system) devices is sometimes a source of challenge, especially when devices are overhanging structures. In this work, a modified cleaving technique is developed to p...Dicing of fabricated MEMS (microelectromechanical system) devices is sometimes a source of challenge, especially when devices are overhanging structures. In this work, a modified cleaving technique is developed to precisely separate fabricated devices from a silicon substrate without requiring a dicing machine. This technique is based on DRIE (deep reactive ion etching) which is regularly used to make cleaving trenches in the substrate during the releasing stage. Other similar techniques require some extra later steps or in some cases a long HF soak. To mask the etching process, a thick photoresist is used. It is shown that by applying different UV (ultraviolate) exposure and developing times for the photoresist, the DRIE process could be controlled to etch specific cleaving trenches with less depth than other patterns on the photoresist. Those cleaving trenches are used to cleave the wafer later, while the whole wafer remains as one piece until the end of the silicon etching despite some features being etched all the way through the wafer at the same time. The other steps of fabricating and releasing the devices are unaffected. The process flow is described in details and some results of applying this technique for cleaving fabricated cantilevers on a silicon substrate are presented.展开更多
As instrument technology is needed for rapid determination of the smaller,thinner and lighter specimens,more stringent demands are related to thin films such as micro-electro-mechanical systems(MEMS),dielectric coatin...As instrument technology is needed for rapid determination of the smaller,thinner and lighter specimens,more stringent demands are related to thin films such as micro-electro-mechanical systems(MEMS),dielectric coatings and electronic packaging.Therefore,the requirement for testing platforms for rapidly determine the mechanical properties of thin films is increasing.Buckling of a film/substrate system could offer a variety of applications,ranging from stretchable electronics to micro-nanoscale metrology.In this paper,a fatigue-loading device has been designed to make the cyclic loading available for investigating the cumulative propagation of thin film buckling.The straight side buckling of thin compressed titanium film with the thickness of 50 nm deposited on organic glass substrates is investigated by using an optical microscope.The cumulative buckling propagation under the cyclic loading of a sequence of peak compression with the frequency 1 Hz is recorded by CCD camera.The buckling extension lengths are calculated by digital image measurement technology.展开更多
文摘In order to increase the electrode surface area and enhance the charge storage capacity, we study the micro electro mechanical system technology to fabricate three-dimensional high aspect ratio micro-electrode structure based on glass. The anodic constant potential method is employed to deposit manganese oxide as electroactive substances on the micro-electrode surface. Cyclic voltammetry and constant current charge-discharge method are both used to prepare electrode electrochemical performance testing, with a two-dimensional electrode without structure for comparison. Experimental results show that three-dimensional elec- trode structure can effectively enhance the charge storage capacity. At 1.0 mA/cm2 charge- discharge density, the three-dimensional electrode shows a capacitance of 17.88 mF/cm2, seven times higher than the two-dimensional electrode.
基金Supported by National Natural Science Foundation of China (No.50505031)Tianjin Municipal Science and Technology Commission(No.043185911)Programfor NewCentury Excellent Talents in University
文摘On account of the multiformity of MEMS devices, it is necessary to integrate with some optical measurement techniques for meeting static and dynamic unit test requirements. In this paper, an automated MEMS test system is built of some commercially available components and instruments based on virtual instrument technology. The system is integrated with stroboscopic imaging, computer micro-vision, microscopic Mirau phase shifting interferometry, and laser Doppler vibrometer, and is used for the measurement of full-view in-plane and out-of-plane geometric parameters and periodical motions and single spot out-of-plane transient motion. The system configuration and measurement methods are analyzed, and some applications of the measurement of in-plane and out-of-plane dimensions and motions were described. The measurement accuracy of in-plane dimensions and out-of-plane dimensional is better than 0.2 um and 5 nm respectively. The resolution of measuring in-plane and out-of-plane motions is better than 15 nm and 2 nm respectively.
文摘Currently, the monitoring of bridges in China heavily relies on manual operation, which has several major problems. It generally takes a very long time to complete an inspection process on bridges. The manual data is sometimes unreliable or even wrong in the case of careless operation. The inspection activity itself is dangerous for inspectors, e.g., bridges are located in the sea or river. Some semi-automatic monitoring methods are recently employed, but they are either very expensive or do not work properly. Therefore, the traditional bridge monitoring process becomes an increasing challenge for bridge operators. In this paper, a real-time and automatic bridge monitoring system is presented to meet the bridge monitoring needs, and MEMS (Micro Electro Mechanical Systems) are the key building block in this system. By using the MEMS-based sensors, it is much more efficient and accurate in monitoring bridges with the measurement of inclination, acceleration, displacement, moisture, temperature, stress and other data.
基金Supported by the National Science Council (NSC 97-2221-E-009-067)
文摘This study describes a novel micro proton exchange membrane fuel cell(PEMFC)(active area,2.5 cm2).The flow field plate is manufactured by applying micro-electromechanical systems(MEMS) technology to silicon substrates to etch flow channels without a gold-coating.Therefore,this investigation used MEMS technology for fabrication of a flow field plate and presents a novel fabrication procedure.Various operating parameters,such as fuel temperature and fuel stoichiometric flow rate,are tested to optimize micro PEMFC performance.A single micro PEMFC using MEMS technology reveals the ideal performance of the proposed fuel cell.The optimal power density approaches 232.75 mW·cm-1 when the fuel cell is operated at ambient condition with humidified,heated fuel.
文摘In this work, new composite membranes were successfully prepared via phase inversion technique using polyvinyl chloride(PVC) and polyvinylpyrrolidone(PVP) as polymers and tetrahydrofuran(THF) and N-methyl-2-pyrrolidone(NMP) as solvents. The prepared membranes have been characterized by scanning electron microscope(SEM), and fourier transforms infrared spectroscopy(FTIR). The scanning electron microscope results prove that the prepared membranes are smooth and their pores are distributed throughout the whole surface and bulk body of the membrane without any visible cracks. The stress–strain mechanical test showed an excellent mechanical behavior enhanced by the presence of PVP in the prepared membranes. The membranes performance results showed that the salt rejection reached 98% with a high flux. This, in turn, makes the prepared membranes can be applied for sea and brackish water treatment through membrane distillation technology.
文摘In this paper, we conduct research on the development of mechanical and electrical integration of system function principle and related technologies. Along with the rapid and continuous development of modem science and technology, it ' s for the penetration and cross of different subjects great push, the more important is caused by technological revolution in the field of engineering and mechanical engineering field under the rapid development of computer technology and microelectronic technology and penetration to the mechanical and electrical integration, which is formed by the mechanical industry lead to trigger a particularly large changes in the mechanical industry management system and mode of production, product and technical structure, composition and function, thus result in industrial production from the previous mechanical electrification progressively electromechanical integration which lead the trend of the current technology.
文摘Silicon deep etching technique is the key fabrication step in the development of MEMS. The mask selectivity and the lateral etching control are the two primary factors that decide the result of deep etching process. These two factors are studied in this paper. The experimental results show that the higher selectivity can be gotten when F - gas is used as etching gas and Al is introduced as mask layer. The lateral etching problems can be solved by adjusting the etching condition, such as increasing the RF power, changing the gas composition and flow volume of etching machine.
基金Supported by the High Technology Research and Development Programme of China (No. 2003AA404060) and the National Natural Science Foundation of China (No.60405008).
文摘A novel MEMS device boning system is presented. Aiming at the high velocity, high precision and high flexibility requirements, a novel manipulator of planar parallel structure is developed to substitute ordinary X-Y table. In addition, the machine vision is implemented to improve the system' s flexibility. The initial angular positions of the joints are estimated by the extended Kalman filter algorithm. As a resuh, the manipulator's absolute locating accuracy in its workspace is guaranteed indirectly. For any MEMS device, the bonding system itself can be used as measurement equipment to create the device' s geometry model, which is the base to do off-line programming. A quite ideal trade-off between the system' s flexibility and efficiency is got. Finally, some verified motion specification of the manipulator, the bonding experimental results and the verified qualities of the bonded devices are provided.
文摘Nowadays, electronic devices are more and more integrated into everyday life. These seamless integrations focus on mobility, but at the same time strive to be unobtrusive to the end user. With the introduction of personal data assistants and intelligent cellular phones for the searching of the website, true mobile computing is closer than ever. However, battery technology, which powers most of these mobile connectivity solutions, has not kept up the same pace of improvement. The paper describes a methodology for the design and performance of a self-excited permanent-magnet generator applied to low power supplies. It combines an analytical field model, a lumped reluctance equivalent magnetic circuit, and an equivalent electrical circuit. An illustrated example of a 15-mW, 290-r/min generator is given, and the analysis techniques are validated by measurements on a prototype system.
文摘micro-electro-mechanical system (MEMS) device has the advantages of both electronic system and mechanical system. With the development of MEMS devices for satellite, it is possible to establish much lighter and smaller nanosatellites with higher performance and longer lifecyele. The power consumption of MEMS devices is usually much lower than that of traditional devices, which will greatly reduce the consumption of power. For its small size and simple architecture, MEMS devices can be easily integrated together and achieve redundancy. Launched on April 18, 2004, NS - 1 is a nanosatellite for science exploration and MEMS devices test. A mass of science data and images were acquired during its running. NS - 1 weights less than 25 kg. It consists of several MEMS devices, including one miniature inertial measurement unit(MIMU) , three micro complementary metal oxide semiconductor (CMOS)cameras, one sun sensor, three momentum wheels, and one micro magnetic sensor. By applying micro components based on MEMS technology, NS - 1 has made success in the experiments of integrative design, manufacture, and MEMS devices integration. In this paper, some MEMS devices for nanosatellite and picosatellite are introduced, which have been tested on NS -1 nanosatellite or on the ground.
文摘Dicing of fabricated MEMS (microelectromechanical system) devices is sometimes a source of challenge, especially when devices are overhanging structures. In this work, a modified cleaving technique is developed to precisely separate fabricated devices from a silicon substrate without requiring a dicing machine. This technique is based on DRIE (deep reactive ion etching) which is regularly used to make cleaving trenches in the substrate during the releasing stage. Other similar techniques require some extra later steps or in some cases a long HF soak. To mask the etching process, a thick photoresist is used. It is shown that by applying different UV (ultraviolate) exposure and developing times for the photoresist, the DRIE process could be controlled to etch specific cleaving trenches with less depth than other patterns on the photoresist. Those cleaving trenches are used to cleave the wafer later, while the whole wafer remains as one piece until the end of the silicon etching despite some features being etched all the way through the wafer at the same time. The other steps of fabricating and releasing the devices are unaffected. The process flow is described in details and some results of applying this technique for cleaving fabricated cantilevers on a silicon substrate are presented.
基金supported by the National Natural Science Foundation of China (Grant Nos 10372069, 10732080, 11072174 and 10672120)the Tianjin Natural Science Foundation (Grant No 06YFJZJC00700)
文摘As instrument technology is needed for rapid determination of the smaller,thinner and lighter specimens,more stringent demands are related to thin films such as micro-electro-mechanical systems(MEMS),dielectric coatings and electronic packaging.Therefore,the requirement for testing platforms for rapidly determine the mechanical properties of thin films is increasing.Buckling of a film/substrate system could offer a variety of applications,ranging from stretchable electronics to micro-nanoscale metrology.In this paper,a fatigue-loading device has been designed to make the cyclic loading available for investigating the cumulative propagation of thin film buckling.The straight side buckling of thin compressed titanium film with the thickness of 50 nm deposited on organic glass substrates is investigated by using an optical microscope.The cumulative buckling propagation under the cyclic loading of a sequence of peak compression with the frequency 1 Hz is recorded by CCD camera.The buckling extension lengths are calculated by digital image measurement technology.