Novel headstand pyrocarbon cones (HPCs) with hollow structure were developed on the surfaces of pyrocarbon layers of the carbon/carbon (C/C) composites at 650-750 °C by the electromagnetic-field-assisted chem...Novel headstand pyrocarbon cones (HPCs) with hollow structure were developed on the surfaces of pyrocarbon layers of the carbon/carbon (C/C) composites at 650-750 °C by the electromagnetic-field-assisted chemical vapor deposition in the absence of catalysts. The fine microstructures of the HPCs were characterized by high-resolution transmission electron microscopy. The results show that the textural features of the HPCs directly transfer from turbostratic structure in roots to a well-ordered high texture in stems. And the degree of high texture ordering decreases gradually from the stem to the tail of the HPCs. The formation mechanism of the HPCs was inferred as the comprehensive effect of polarization induction on electromagnetic fields and particle-filler property under disruptive discharge.展开更多
TB877 2000021096电子全息的数字重现及其在微电磁场测量中的应用=Digital reconstruction of electron hologramsand its applications to measurement of electromagneticmicrofields[刊,中]/肖体乔,张映箕,徐洪杰(中科院上海原子核...TB877 2000021096电子全息的数字重现及其在微电磁场测量中的应用=Digital reconstruction of electron hologramsand its applications to measurement of electromagneticmicrofields[刊,中]/肖体乔,张映箕,徐洪杰(中科院上海原子核研究所.上海),陈建文(中科院上海光机所.上海(201800))//电子显微学报.-1999,18(5).-554-561阐述了用数字方法重现电子全息图及实现噪声消除,位相差放大的基本原理。展开更多
Mn-doped ZnO diluted magnetic semiconductor nanoparticles are prepared by an ultrasonic assisted sol-gel process.Transmission electron microscopy shows pseudo-hexagonal nanoparticles with an average size of about 24 n...Mn-doped ZnO diluted magnetic semiconductor nanoparticles are prepared by an ultrasonic assisted sol-gel process.Transmission electron microscopy shows pseudo-hexagonal nanoparticles with an average size of about 24 nm.From the analysis of X-ray diffraction,the Mn-doped ZnO nanoparticles are identified to be a wurtzite structure without any impurity phases.The magnetic properties are measured by using superconducting quantum interference device.For the ZnO with 2% Mn doping concentration,a good hysteresis loop indicates fine ferromagnetism with a Curie temperature higher than 350 K.展开更多
The working principle of LFEC(Low frequency electromagnetic casting) process developed in Northeastern University, China was introduced and the metallurgical results of LFEC were discussed according to the casting p...The working principle of LFEC(Low frequency electromagnetic casting) process developed in Northeastern University, China was introduced and the metallurgical results of LFEC were discussed according to the casting practices. The low frequency field around the mold produces Lorenz force, which can be divided into two parts: one is the potential force which will be balanced by a pressure gradient of the liquid and results in the formation of a convex surface meniscus and improves the surface quality; the other is the rotary force which stirs the liquid in the mold to refine the microstructures and homogenize the distribution of alloying elements. LFEC can refine microstructures remarkably, improve surface quality of the ingots, depress macrosegregation and eliminate cracks. Some new technologies, such as horizontal direct chill casting under low-frequency electromagnetic field (HLEC), DC casting of hollow billets under electromagnetic fields (HBEC), electromagnetic modifying of hypereutectic A1-Si alloys(EMM), air film casting under static magnetic field (AFCM), and multi-ingots casting under low-frequency magnetic field (MLFEC) were developed based on LFEC.展开更多
ELF (extremely low frequency) magnetic fields from power-line current influence the yield of CMOS foundry. The poor yield happens because of ELF magnetic fields inducing directly the measurement or process equipment...ELF (extremely low frequency) magnetic fields from power-line current influence the yield of CMOS foundry. The poor yield happens because of ELF magnetic fields inducing directly the measurement or process equipment for cutting-edge chips below 28 nm process. The equipments of electron microscopes, including SEM (scanning electron microscope), TEM (transmission electron microscopy), STEM (scanning transmission electron microscopy) and EBLS (electron beam lithography system) are very susceptible to ELF magnetic fields emanating from various electrical power sources outside of the building and within next generation CMOS foundry recommends a maximum of 0.3 mG. The active canceling method uses active coils with current sensing field via sensor and inducing man-made electromagnetic field to reduce the stray magnetic field. Unfortunately, the conventional system takes more time to products field because of parasitical capacitance and resistance in long coil. The longer canceling coil the system construct, the more time it takes. Besides, canceling system should spend more time on calibrating non-linear current amplifier through software design. This research designs simpler anti-electro-magnetic system instead of typical frame and develops one turn canceling coil structure to reduce delaying time. Several parallel cells generate field up to 23.81 mG controlled by MPU (micro processor unit). This system decreases the power-line inducing filed below 0.3 mG.展开更多
Ni1-xZnxFe2O4(0≤x≤1,in steps of 0.1) nanocrystallines were synthesized by sol-gel route.The doping effects of zinc on structural,magnetic and microwave absorption properties were investigated in detail.X-ray diffrac...Ni1-xZnxFe2O4(0≤x≤1,in steps of 0.1) nanocrystallines were synthesized by sol-gel route.The doping effects of zinc on structural,magnetic and microwave absorption properties were investigated in detail.X-ray diffraction(XRD) results show that all the samples are single-phase spinel structure.The magnetic and microwave absorption properties are strongly dependent on the zinc content,which can be understood in terms of the cations redistribution in spinel tetrahedral and octahedral sites with the increase of zinc content.The magnetic measurement shows the antiferromagnetic nature of the samples for x=0.9 and x=1.0.The saturation magnetization reaches the maximum of 3.35μB/f.u.at x=0.5.The optimal reflection loss(RL) of-29.6 dB is found at 6.5 GHz for an absorber thickness of 5 mm.The RL values exceeding 10 dB are obtained for the absorber in the range of 3.9-8.9 GHz.These Ni1-xZnxFe2O4 nanocrystallines may be attractive candidates for electromagnetic wave absorption materials.展开更多
We investigate one-dimensional position microscopy of a three-level atom moving through a stationary wave region under the condition of electromagnetically induced transparency.The precise position information of an a...We investigate one-dimensional position microscopy of a three-level atom moving through a stationary wave region under the condition of electromagnetically induced transparency.The precise position information of an atom is observed on the resonance absorption and dispersion distribution spectrum of a weak probe field.Single and multiple localization peaks are observed in specific directions of the corresponding wave numbers and phase of the standing wave fields.The strength of space-independent Rabi frequency reduces the position uncertainty in the localized peaks without disturbing the probability of the atom.In a hot atomic medium the localized probability of an atom is reduced which depends upon the temperature of that medium.Our results provide useful applications in the development of laser cooling,atom nanolithography and Bose-Einstein condensation.展开更多
基金Project (2011CB605801) supported by the National Basic Research Program of ChinaProject (2011M500127) supported by the China Postdoctoral Science Foundation+1 种基金Projects (50802115, 51102089) supported by the National Natural Science Foundation of ChinaProject supported by the Postdoctoral Fund of the Central South University, China
文摘Novel headstand pyrocarbon cones (HPCs) with hollow structure were developed on the surfaces of pyrocarbon layers of the carbon/carbon (C/C) composites at 650-750 °C by the electromagnetic-field-assisted chemical vapor deposition in the absence of catalysts. The fine microstructures of the HPCs were characterized by high-resolution transmission electron microscopy. The results show that the textural features of the HPCs directly transfer from turbostratic structure in roots to a well-ordered high texture in stems. And the degree of high texture ordering decreases gradually from the stem to the tail of the HPCs. The formation mechanism of the HPCs was inferred as the comprehensive effect of polarization induction on electromagnetic fields and particle-filler property under disruptive discharge.
文摘TB877 2000021096电子全息的数字重现及其在微电磁场测量中的应用=Digital reconstruction of electron hologramsand its applications to measurement of electromagneticmicrofields[刊,中]/肖体乔,张映箕,徐洪杰(中科院上海原子核研究所.上海),陈建文(中科院上海光机所.上海(201800))//电子显微学报.-1999,18(5).-554-561阐述了用数字方法重现电子全息图及实现噪声消除,位相差放大的基本原理。
基金Supported bythe Hunan Provincial Natural Science Foundation ofChina (No.05JJ30126) the Scientific Research Fund of HunanProvincial Education Department (No.04B061)+1 种基金the Key Labora-tory of Advanced Materials & Rheological Properties (Xiangtan University) ,Ministry of Education (No.KF0506) ,the Fundof Xiangtan University (05IND10) .
文摘Mn-doped ZnO diluted magnetic semiconductor nanoparticles are prepared by an ultrasonic assisted sol-gel process.Transmission electron microscopy shows pseudo-hexagonal nanoparticles with an average size of about 24 nm.From the analysis of X-ray diffraction,the Mn-doped ZnO nanoparticles are identified to be a wurtzite structure without any impurity phases.The magnetic properties are measured by using superconducting quantum interference device.For the ZnO with 2% Mn doping concentration,a good hysteresis loop indicates fine ferromagnetism with a Curie temperature higher than 350 K.
基金Project(2005CB623707) supported by the National Basic Research Program of China Projects(2007CB613701 and 2007CB613702) supported by the National Key Basic Research Program of China+2 种基金Projects(50974037,51004032 and 50904018) supported by the National Natural Science Foundation of ChinaProject(NCET-08-0098) supported by the New Century Excellent Talents in University,Ministry of Education,ChinaProject(20100471468) supported by China Postdoctoral Science Foundation
文摘The working principle of LFEC(Low frequency electromagnetic casting) process developed in Northeastern University, China was introduced and the metallurgical results of LFEC were discussed according to the casting practices. The low frequency field around the mold produces Lorenz force, which can be divided into two parts: one is the potential force which will be balanced by a pressure gradient of the liquid and results in the formation of a convex surface meniscus and improves the surface quality; the other is the rotary force which stirs the liquid in the mold to refine the microstructures and homogenize the distribution of alloying elements. LFEC can refine microstructures remarkably, improve surface quality of the ingots, depress macrosegregation and eliminate cracks. Some new technologies, such as horizontal direct chill casting under low-frequency electromagnetic field (HLEC), DC casting of hollow billets under electromagnetic fields (HBEC), electromagnetic modifying of hypereutectic A1-Si alloys(EMM), air film casting under static magnetic field (AFCM), and multi-ingots casting under low-frequency magnetic field (MLFEC) were developed based on LFEC.
文摘ELF (extremely low frequency) magnetic fields from power-line current influence the yield of CMOS foundry. The poor yield happens because of ELF magnetic fields inducing directly the measurement or process equipment for cutting-edge chips below 28 nm process. The equipments of electron microscopes, including SEM (scanning electron microscope), TEM (transmission electron microscopy), STEM (scanning transmission electron microscopy) and EBLS (electron beam lithography system) are very susceptible to ELF magnetic fields emanating from various electrical power sources outside of the building and within next generation CMOS foundry recommends a maximum of 0.3 mG. The active canceling method uses active coils with current sensing field via sensor and inducing man-made electromagnetic field to reduce the stray magnetic field. Unfortunately, the conventional system takes more time to products field because of parasitical capacitance and resistance in long coil. The longer canceling coil the system construct, the more time it takes. Besides, canceling system should spend more time on calibrating non-linear current amplifier through software design. This research designs simpler anti-electro-magnetic system instead of typical frame and develops one turn canceling coil structure to reduce delaying time. Several parallel cells generate field up to 23.81 mG controlled by MPU (micro processor unit). This system decreases the power-line inducing filed below 0.3 mG.
基金supported by the National Natural Science Foundation of China (Grant Nos.10874051,51002156,and 11104098)the Natural Science Major Foundation of Anhui Provincial Higher Education Institutions of China (Grant No. KJ2012ZD14)
文摘Ni1-xZnxFe2O4(0≤x≤1,in steps of 0.1) nanocrystallines were synthesized by sol-gel route.The doping effects of zinc on structural,magnetic and microwave absorption properties were investigated in detail.X-ray diffraction(XRD) results show that all the samples are single-phase spinel structure.The magnetic and microwave absorption properties are strongly dependent on the zinc content,which can be understood in terms of the cations redistribution in spinel tetrahedral and octahedral sites with the increase of zinc content.The magnetic measurement shows the antiferromagnetic nature of the samples for x=0.9 and x=1.0.The saturation magnetization reaches the maximum of 3.35μB/f.u.at x=0.5.The optimal reflection loss(RL) of-29.6 dB is found at 6.5 GHz for an absorber thickness of 5 mm.The RL values exceeding 10 dB are obtained for the absorber in the range of 3.9-8.9 GHz.These Ni1-xZnxFe2O4 nanocrystallines may be attractive candidates for electromagnetic wave absorption materials.
文摘We investigate one-dimensional position microscopy of a three-level atom moving through a stationary wave region under the condition of electromagnetically induced transparency.The precise position information of an atom is observed on the resonance absorption and dispersion distribution spectrum of a weak probe field.Single and multiple localization peaks are observed in specific directions of the corresponding wave numbers and phase of the standing wave fields.The strength of space-independent Rabi frequency reduces the position uncertainty in the localized peaks without disturbing the probability of the atom.In a hot atomic medium the localized probability of an atom is reduced which depends upon the temperature of that medium.Our results provide useful applications in the development of laser cooling,atom nanolithography and Bose-Einstein condensation.