The authors’ surveys in May-June 1999 (two cruises) at six sampling stations near nuclear power plants (NPP) and marine fish culture zones in Daya Bay, Guangdong, revealed species composition, densities and body-size...The authors’ surveys in May-June 1999 (two cruises) at six sampling stations near nuclear power plants (NPP) and marine fish culture zones in Daya Bay, Guangdong, revealed species composition, densities and body-size of the sea surface microlayer (SM) zooplankton (>35 μm). Results showed that protozoans and copepod nauplii were the predominant components, accounting for 65.40% to 95.56% of total zooplankton in abundance. The size-frequency distributions showed that the frequency of micro-zooplankton (0.02-0.2 mm) reached 0.8235. The SM zooplankton community structure revealed in the present study was quite different from that revealed by investigations in the 1980s in Daya Bay. Difference of sampling method has important influence on the obtained zooplankton community structure. SM zooplankton consisted of micro- and mesozooplankton (0.2-2.0 mm), with micro-zooplankton being predominant. Some possible cause-effect relations between the zooplankton community structure and mariculture, nuclear power plants cooling systems and sampling method are discussed.展开更多
The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking en...The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking energy feedback unit and battery energy storage unit is proposed,which provides green power for the station.In order to suppress the fluctuation of photovoltaic power generation and the intermittence of regenerative braking feedback energy,the energy management mode of microgrid is designed according to the illumination situation,braking energy feedback situation,battery state of charge and so on.In addition,a coordination control method based on virtual synchronous generator(VSG)is proposed to realize smooth switching among modes.Finally,the proposed energy management and coordination control method for elevated station microgrid is verified by Matlab/Simulink.The results show that the elevated station microgrid can operate safely and reliably under various energy management modes and realize smooth switching among modes.展开更多
MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchr...MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchronous generator in the developed MHPP system is introduced. Proposed hybrid DC excitation system consists of solar & hydrogen energy based power generating systems. Hybrid renewable energy based system is used for the excitation of the synchronous generator in the MHPP test system. The renewables are used as a secondary energy source to provide the excitation current to a synchronous generator that generates energy in MHPP. A PV (photovoltaic) array is used as the main source of excitation, and a FC (fuel cell) stack is used for DC excitation in the lack of sunshine. In the experimental setup, an electrical control card is developed, and a microcontroller is used to perform the proposed excitation system. All experimental results obtained from 5 kW rated power MHHP test system. Experimental results show that, the proposed method provides the continuous excitation current, and the operation of the synchronous generator is uninterrupted. The proposed method is also practical and easily implemented for MHPP systems.展开更多
文摘The authors’ surveys in May-June 1999 (two cruises) at six sampling stations near nuclear power plants (NPP) and marine fish culture zones in Daya Bay, Guangdong, revealed species composition, densities and body-size of the sea surface microlayer (SM) zooplankton (>35 μm). Results showed that protozoans and copepod nauplii were the predominant components, accounting for 65.40% to 95.56% of total zooplankton in abundance. The size-frequency distributions showed that the frequency of micro-zooplankton (0.02-0.2 mm) reached 0.8235. The SM zooplankton community structure revealed in the present study was quite different from that revealed by investigations in the 1980s in Daya Bay. Difference of sampling method has important influence on the obtained zooplankton community structure. SM zooplankton consisted of micro- and mesozooplankton (0.2-2.0 mm), with micro-zooplankton being predominant. Some possible cause-effect relations between the zooplankton community structure and mariculture, nuclear power plants cooling systems and sampling method are discussed.
基金National Natural Science Foundation of China(No.51367010)Science and Technology Program of Gansu Province(No.17JR5RA083)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)
文摘The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking energy feedback unit and battery energy storage unit is proposed,which provides green power for the station.In order to suppress the fluctuation of photovoltaic power generation and the intermittence of regenerative braking feedback energy,the energy management mode of microgrid is designed according to the illumination situation,braking energy feedback situation,battery state of charge and so on.In addition,a coordination control method based on virtual synchronous generator(VSG)is proposed to realize smooth switching among modes.Finally,the proposed energy management and coordination control method for elevated station microgrid is verified by Matlab/Simulink.The results show that the elevated station microgrid can operate safely and reliably under various energy management modes and realize smooth switching among modes.
文摘MHPPs (micro hydro power plants) have become prominent in hydropower plants as a solution to provide the energy demands of the grid. In this study, a new hybrid renewable energy based DC excitation system for synchronous generator in the developed MHPP system is introduced. Proposed hybrid DC excitation system consists of solar & hydrogen energy based power generating systems. Hybrid renewable energy based system is used for the excitation of the synchronous generator in the MHPP test system. The renewables are used as a secondary energy source to provide the excitation current to a synchronous generator that generates energy in MHPP. A PV (photovoltaic) array is used as the main source of excitation, and a FC (fuel cell) stack is used for DC excitation in the lack of sunshine. In the experimental setup, an electrical control card is developed, and a microcontroller is used to perform the proposed excitation system. All experimental results obtained from 5 kW rated power MHHP test system. Experimental results show that, the proposed method provides the continuous excitation current, and the operation of the synchronous generator is uninterrupted. The proposed method is also practical and easily implemented for MHPP systems.