To find a design method for 3D active multichannel silicon microelectrode, a microstructure of active neural recording system is presented, where two 2D probes, two integrated circuits and two spacers are microassembl...To find a design method for 3D active multichannel silicon microelectrode, a microstructure of active neural recording system is presented, where two 2D probes, two integrated circuits and two spacers are microassembled on a 5 mm×7 mm silicon platform, and 32 sites neural signals can be operated simultaneously. A theoretical model for measuring the neural signal by the silicon microelectrode is proposed based on the structure and fabrication process of a single-shank probe. The method of determining the dimensional parameters of the probe shank is discussed in the following three aspects, i.e. the structures of pallium and endocranium, coupled interconnecters noise, and strength characteristic of neural probe. The design criterion is to minimize the size of the neural probe as well as that the probe has enough stiffness to pierce the endocranium. The on-chip unity-gain bandpass amplifier has an overall gain of 42 dB over a bandwidth from 60 Hz to 10 kHz; and the DC-baseline stability circuit is of high input resistance above 30 MΩ to guarantee a cutoff frequency below 100 Hz. The circuit works in stimulating or recording modes. The conversion of the modes depends on the stimulating control signal.展开更多
基金Supported by Tianjin Municipal Science and Technology Commission(No. 05YFSYSF01700).
文摘To find a design method for 3D active multichannel silicon microelectrode, a microstructure of active neural recording system is presented, where two 2D probes, two integrated circuits and two spacers are microassembled on a 5 mm×7 mm silicon platform, and 32 sites neural signals can be operated simultaneously. A theoretical model for measuring the neural signal by the silicon microelectrode is proposed based on the structure and fabrication process of a single-shank probe. The method of determining the dimensional parameters of the probe shank is discussed in the following three aspects, i.e. the structures of pallium and endocranium, coupled interconnecters noise, and strength characteristic of neural probe. The design criterion is to minimize the size of the neural probe as well as that the probe has enough stiffness to pierce the endocranium. The on-chip unity-gain bandpass amplifier has an overall gain of 42 dB over a bandwidth from 60 Hz to 10 kHz; and the DC-baseline stability circuit is of high input resistance above 30 MΩ to guarantee a cutoff frequency below 100 Hz. The circuit works in stimulating or recording modes. The conversion of the modes depends on the stimulating control signal.