Calcium phosphate film was prepared by electrochemical deposition technology. Subsequently, the alkaline treatment process of calcium phosphate film in 0.1 mol/L NaOH solution was monitored on real time by the piezoel...Calcium phosphate film was prepared by electrochemical deposition technology. Subsequently, the alkaline treatment process of calcium phosphate film in 0.1 mol/L NaOH solution was monitored on real time by the piezoelectric quartz crystal impedance (PQCI) technique. The variations of morphology and composition for the alkaline treatment products were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The dynamic variations of calcium phosphate can be characterized by the change of equivalent circuit parameters. The results show that the forming process of hydroxyapatite (HA) is composed of three stages: (1) acidic calcium phosphate dissolution; (2) phase transformation; and (3) HA formation. Furthermore, the correlative kinetic equations and parameters are obtained by fitting the static capacitance (C8)-time curves.展开更多
基金Project(2005CB623901) supported by the Major State Basic Research and Development Program of China
文摘Calcium phosphate film was prepared by electrochemical deposition technology. Subsequently, the alkaline treatment process of calcium phosphate film in 0.1 mol/L NaOH solution was monitored on real time by the piezoelectric quartz crystal impedance (PQCI) technique. The variations of morphology and composition for the alkaline treatment products were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively. The dynamic variations of calcium phosphate can be characterized by the change of equivalent circuit parameters. The results show that the forming process of hydroxyapatite (HA) is composed of three stages: (1) acidic calcium phosphate dissolution; (2) phase transformation; and (3) HA formation. Furthermore, the correlative kinetic equations and parameters are obtained by fitting the static capacitance (C8)-time curves.