AIM: To identify alterations in genes and molecular functional pathways in esophageal cancer in a high incidence region of India where there is a widespread use of tobacco and betel quid with fermented areca nuts. ME...AIM: To identify alterations in genes and molecular functional pathways in esophageal cancer in a high incidence region of India where there is a widespread use of tobacco and betel quid with fermented areca nuts. METHODS: Total RNA was isolated from tumor and matched normal tissue of 16 patients with esophageal squamous cell carcinoma. Pooled tumor tissue RNA was labeled with Cy3-dUTP and pooled normal tissue RNA was labeled with Cy5-dUTP by direct labeling method. The labeled probes were hybridized with human 10K cDNA chip and expression profiles were analyzed by Genespring GX V 7.3 (Silicon Genetics). RESULTS: Nine hundred twenty three genes were differentially expressed. Of these, 611 genes were upregulated and 312 genes were downregulated. Using stringent criteria (P ≤ 0.05 and ≥ 1.5 fold change), 127 differentially expressed genes (87 upregulated and 40 downregulated) were identified in tumor tissue. On the basis of Gene Ontology, four different molecular functional pathways (HAPK pathway, G-protein coupled receptor family, ion transport activity, and serine or threonine kinase activity)were most significantly upregulated and six different molecular functional pathways (structural constituent of ribosome, endopeptidase inhibitor activity, structural constituent of cytoskeleton, antioxidant activity, acyl group transferase activity, eukaryotic translation elongation factor activity)were most significantly downregulated. CONCLUSION: Several genes that showed alterations in our study have also been reported from a high incidence area of esophageal cancer in China. This indicates that molecular profiles of esophageal cancer in these two different geographic locations are highly consistent.展开更多
This paper introduces a novel fiat plate solar collector (FPC) using micro heat pipe array (MHPA) as a key element. To analyze the thermal transfer behavior of flat plate solar collector with micro heat pipe array...This paper introduces a novel fiat plate solar collector (FPC) using micro heat pipe array (MHPA) as a key element. To analyze the thermal transfer behavior of flat plate solar collector with micro heat pipe array (MHPA-FPC), an indoor experiment for thermal transfer characteristic of MHPA applied to FPC was conducted by using an electrical heating film to simulate the solar radiation. Different cooling water flow rates, cooling water temperatures, slopes, and contact thermal resistances be- tween the condenser of MHPA and the heat exchanger were tested at different heating powers. The experimental results in- dicate that MHPA-FPC exhibits the enhanced heat transfer capability with increased cooling water flow rate and temperature. Total thermal resistance has a maximum decline of approximately 10% when the flow rate increases from 180 to 360 L h-1 and 38% when the cooling water temperature increases from 20~C to 40~C. When the inclination angle of MHPA-FPC ex- ceeds 30~, the slope change has a negligible effect on the heat transfer performance of MHPA-FPC. In addition, contact thermal resistance significantly affects the heat transfer capability of MHPA-FPC. The total thermal resistances lowers to nearly half of the original level when contact material between the condenser of MHPA and the heat exchanger changes from conductive silicone to conductive grease. These results could provide useful information for the optimal design and operation of MHPA-FPC.展开更多
As perovskite quantum dots(PeQDs)are performing their outstanding characteristics,incremental efforts have been devoted to such materials.Here,inspired by the spider spinning process,we present novel PeQDs microfibers...As perovskite quantum dots(PeQDs)are performing their outstanding characteristics,incremental efforts have been devoted to such materials.Here,inspired by the spider spinning process,we present novel PeQDs microfibers with tailorable morphologies and functions from a multi-injection microfluidic approach.The microfibers were generated by introducing PeQDs precursors into each barrel of the inner capillary array and mixing them in the spindle middle channel,where the poly(vinylidene fluoride)(PVDF)dissolved in N,N-dimethyl formamide(DMF)was also injected as their sheath fluid.During this process,the PeQDs were in situ synthesized with the connection of precursor cations and anions in the core fluid;while the PVDF formed solidified microfibers to encapsulate PeQDs with the fast dispersion of DMF into the outer aqueous solution.Thus,the good encapsulation of PeQDs was achieved in PVDF microfibers,which effectively protected them from different hostile environments.Because of the highly tunable spinning processes,the microfibers exhibited controllable diameters and helical geometric structures,and the encapsulated PeQDs could yield adjustable emission peaks.Based on the PeQDs microfibers,we have explored their potential as luminescent materials in barcodes and as flexible photodetectors,which make such microfibers highly versatile for different areas.展开更多
基金Supported by Non Communicable Disease Division,Indian Council of Medical Research
文摘AIM: To identify alterations in genes and molecular functional pathways in esophageal cancer in a high incidence region of India where there is a widespread use of tobacco and betel quid with fermented areca nuts. METHODS: Total RNA was isolated from tumor and matched normal tissue of 16 patients with esophageal squamous cell carcinoma. Pooled tumor tissue RNA was labeled with Cy3-dUTP and pooled normal tissue RNA was labeled with Cy5-dUTP by direct labeling method. The labeled probes were hybridized with human 10K cDNA chip and expression profiles were analyzed by Genespring GX V 7.3 (Silicon Genetics). RESULTS: Nine hundred twenty three genes were differentially expressed. Of these, 611 genes were upregulated and 312 genes were downregulated. Using stringent criteria (P ≤ 0.05 and ≥ 1.5 fold change), 127 differentially expressed genes (87 upregulated and 40 downregulated) were identified in tumor tissue. On the basis of Gene Ontology, four different molecular functional pathways (HAPK pathway, G-protein coupled receptor family, ion transport activity, and serine or threonine kinase activity)were most significantly upregulated and six different molecular functional pathways (structural constituent of ribosome, endopeptidase inhibitor activity, structural constituent of cytoskeleton, antioxidant activity, acyl group transferase activity, eukaryotic translation elongation factor activity)were most significantly downregulated. CONCLUSION: Several genes that showed alterations in our study have also been reported from a high incidence area of esophageal cancer in China. This indicates that molecular profiles of esophageal cancer in these two different geographic locations are highly consistent.
基金financially supported by the Natural Science Foundation of Beijing(Grant No.Z1004020201201)the Opening Funds of State Key Laboratory of Building Safety and Build Environment of China(Grant No.BSBE 2011-07)
文摘This paper introduces a novel fiat plate solar collector (FPC) using micro heat pipe array (MHPA) as a key element. To analyze the thermal transfer behavior of flat plate solar collector with micro heat pipe array (MHPA-FPC), an indoor experiment for thermal transfer characteristic of MHPA applied to FPC was conducted by using an electrical heating film to simulate the solar radiation. Different cooling water flow rates, cooling water temperatures, slopes, and contact thermal resistances be- tween the condenser of MHPA and the heat exchanger were tested at different heating powers. The experimental results in- dicate that MHPA-FPC exhibits the enhanced heat transfer capability with increased cooling water flow rate and temperature. Total thermal resistance has a maximum decline of approximately 10% when the flow rate increases from 180 to 360 L h-1 and 38% when the cooling water temperature increases from 20~C to 40~C. When the inclination angle of MHPA-FPC ex- ceeds 30~, the slope change has a negligible effect on the heat transfer performance of MHPA-FPC. In addition, contact thermal resistance significantly affects the heat transfer capability of MHPA-FPC. The total thermal resistances lowers to nearly half of the original level when contact material between the condenser of MHPA and the heat exchanger changes from conductive silicone to conductive grease. These results could provide useful information for the optimal design and operation of MHPA-FPC.
基金the National Key Research and Development Program of China(2020YFA0908200)the National Natural Science Foundation of China(52073060 and 61927805)+2 种基金the Natural Science Foundation of Jiangsu(BE2018707)Shenzhen Fundamental Research Program(JCYJ20190813152616459)China Postdoctoral Science Foundation(2020M680652)。
文摘As perovskite quantum dots(PeQDs)are performing their outstanding characteristics,incremental efforts have been devoted to such materials.Here,inspired by the spider spinning process,we present novel PeQDs microfibers with tailorable morphologies and functions from a multi-injection microfluidic approach.The microfibers were generated by introducing PeQDs precursors into each barrel of the inner capillary array and mixing them in the spindle middle channel,where the poly(vinylidene fluoride)(PVDF)dissolved in N,N-dimethyl formamide(DMF)was also injected as their sheath fluid.During this process,the PeQDs were in situ synthesized with the connection of precursor cations and anions in the core fluid;while the PVDF formed solidified microfibers to encapsulate PeQDs with the fast dispersion of DMF into the outer aqueous solution.Thus,the good encapsulation of PeQDs was achieved in PVDF microfibers,which effectively protected them from different hostile environments.Because of the highly tunable spinning processes,the microfibers exhibited controllable diameters and helical geometric structures,and the encapsulated PeQDs could yield adjustable emission peaks.Based on the PeQDs microfibers,we have explored their potential as luminescent materials in barcodes and as flexible photodetectors,which make such microfibers highly versatile for different areas.