Stimulated emission depletion(STED) microscope is one of the most prominent super-resolution bio-imaging instruments, which holds great promise for ultrahigh-resolution imaging of cells. To construct a STED microscope...Stimulated emission depletion(STED) microscope is one of the most prominent super-resolution bio-imaging instruments, which holds great promise for ultrahigh-resolution imaging of cells. To construct a STED microscope, it is challenging to realize temporal synchronization between the excitation pulses and the depletion pulses. In this study, we present a simple and low-cost method to achieve pulse synchronization by using a condensed fluorescent dye as a depletion indicator. By using this method, almost all the confocal microscopes can be upgraded to a STED system without losing its original functions. After the pulse synchronization,our STED system achieved sub-100-nm resolution for fluorescent nanospheres and single-cell imaging.展开更多
We report on a cross-sectional high resolution transmission electron microscope study of lead sulfide nanocrystal quantum dots (NCQDs) dispersed on electron-transparent silicon nanopillars that enables nearly atomic...We report on a cross-sectional high resolution transmission electron microscope study of lead sulfide nanocrystal quantum dots (NCQDs) dispersed on electron-transparent silicon nanopillars that enables nearly atomically-resolved simultaneous imaging of the entire composite: the quantum dot, the interfacial region, and the silicon substrate. Considerable richness in the nanocrystal shape and orientation with respect to the substrate lattice is observed. The average NCQD-substrate separation is found to be significantly smaller than the length of the ligands on the NCQDs. Complementary photoluminescence measurements show that light emission from PbS NCQDs on silicon is effectively quenched which we attribute to intrinsic mechanisms of energy and charge transfer from PbS NCQDs to Si.展开更多
基金supported by the National Natural Science Foundation of China (21227804, 21390414, 61378062, 21505148)National Key Research and Development Program (2016YFA0400902)the Natural Science Foundation of Shanghai (15ZR1448400, 14ZR1448000)
文摘Stimulated emission depletion(STED) microscope is one of the most prominent super-resolution bio-imaging instruments, which holds great promise for ultrahigh-resolution imaging of cells. To construct a STED microscope, it is challenging to realize temporal synchronization between the excitation pulses and the depletion pulses. In this study, we present a simple and low-cost method to achieve pulse synchronization by using a condensed fluorescent dye as a depletion indicator. By using this method, almost all the confocal microscopes can be upgraded to a STED system without losing its original functions. After the pulse synchronization,our STED system achieved sub-100-nm resolution for fluorescent nanospheres and single-cell imaging.
文摘We report on a cross-sectional high resolution transmission electron microscope study of lead sulfide nanocrystal quantum dots (NCQDs) dispersed on electron-transparent silicon nanopillars that enables nearly atomically-resolved simultaneous imaging of the entire composite: the quantum dot, the interfacial region, and the silicon substrate. Considerable richness in the nanocrystal shape and orientation with respect to the substrate lattice is observed. The average NCQD-substrate separation is found to be significantly smaller than the length of the ligands on the NCQDs. Complementary photoluminescence measurements show that light emission from PbS NCQDs on silicon is effectively quenched which we attribute to intrinsic mechanisms of energy and charge transfer from PbS NCQDs to Si.