ZnS ∶Cu nanoparticles were prepared by using microemulsion method at room temperature. The size of the particles is 2-8 nm by transmission electron microscopy (TEM) and dynamic light scattering (DLS) technique. X-ray...ZnS ∶Cu nanoparticles were prepared by using microemulsion method at room temperature. The size of the particles is 2-8 nm by transmission electron microscopy (TEM) and dynamic light scattering (DLS) technique. X-ray diffraction analysis shows that the particles are cubic crystal structure, the same structure as the bulk ZnS materials. Ultraviolet absorption demonstrates an increased bandgap due to quantum confinement effect. Photoluminescence spectrum shows there is a single green emission band at 482 nm.展开更多
Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode...Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode surface. Effects of electrolytic parameters on the size of Ni particles were studied. The performances of hydrogen evolution and hydrogen storage of the Ni nanoparticles plating electrode were also investigated. The results indicate that the size of Ni nanoparticles decreases with the increase of Ni2+ concentration and the decrease of current density. The electrochemical activity of Ni nanoparticles plating electrode is much higher than that of bulk Ni electrode.展开更多
In this paper, the surface imprinted cross-linked polystyrene beads were prepared via suspension polymerization with styrene (St), divinylbezene (DVB), polyvinyl alcohol (PVA1788), the mixture of Span 85 and xylene or...In this paper, the surface imprinted cross-linked polystyrene beads were prepared via suspension polymerization with styrene (St), divinylbezene (DVB), polyvinyl alcohol (PVA1788), the mixture of Span 85 and xylene or the mixture of Span 85 and paraffin as monomer, cross-linking agent, dispersion stabilizer and templates, respectively. The results indicate that there are dense cavities on the surface of beads, and the diameter and density of cavity are related with the composition and amount of emulsion template. The forming mechanism of cavity from thermodynamics and dynamics was proposed.展开更多
1 INTRODUCTIONMicroemulsion and micelle systems are wide-spread in the industry and agriculture applications,e.g.the petroleum exploitation,food industry chemical engineering and biological engineering,but so far,thei...1 INTRODUCTIONMicroemulsion and micelle systems are wide-spread in the industry and agriculture applications,e.g.the petroleum exploitation,food industry chemical engineering and biological engineering,but so far,their properties are still not very well understood.Both micelle and microemulsion systems are dispersed systems and consist of the aggregationsof the surfactant.The difference between them is that there is dispered liquid phase in the coreof the aggregation in the case of the microemulsion,but in the micelle there is not any展开更多
Fe3O4/P (NaUA-St-BA) core-shell composite micro spheres were in situ prepared by soapless polymerization of styrene and butyl acrylate, with Fe3O4magnetic colloidal particles coated with NaUA. The results of IR and ...Fe3O4/P (NaUA-St-BA) core-shell composite micro spheres were in situ prepared by soapless polymerization of styrene and butyl acrylate, with Fe3O4magnetic colloidal particles coated with NaUA. The results of IR and XRD analysis demonstrated that the desired polymer chains have been covalently bonded to the surface of Fe3O4 nano particles. The morphology analysis by TEM confirmed that the composite particles have the core-shell structure and a relatively uniform diameter of about 100nm. The magnetic properties of the obtained composite latex particles were measured by VSM and found that they exhibited super paramagnetic properties. Finally, the prepared magnetic composite particles latex is stable for several months.展开更多
文摘ZnS ∶Cu nanoparticles were prepared by using microemulsion method at room temperature. The size of the particles is 2-8 nm by transmission electron microscopy (TEM) and dynamic light scattering (DLS) technique. X-ray diffraction analysis shows that the particles are cubic crystal structure, the same structure as the bulk ZnS materials. Ultraviolet absorption demonstrates an increased bandgap due to quantum confinement effect. Photoluminescence spectrum shows there is a single green emission band at 482 nm.
基金Projects(20673036,J0830415) supported by the National Natural Science Foundation of ChinaProject(09JJ3025) supported by Hunan Provincial Natural Science Foundation of ChinaProject(09GK3173) supported by the Planned Science and Technology Project of Hunan Province,China
文摘Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode surface. Effects of electrolytic parameters on the size of Ni particles were studied. The performances of hydrogen evolution and hydrogen storage of the Ni nanoparticles plating electrode were also investigated. The results indicate that the size of Ni nanoparticles decreases with the increase of Ni2+ concentration and the decrease of current density. The electrochemical activity of Ni nanoparticles plating electrode is much higher than that of bulk Ni electrode.
文摘In this paper, the surface imprinted cross-linked polystyrene beads were prepared via suspension polymerization with styrene (St), divinylbezene (DVB), polyvinyl alcohol (PVA1788), the mixture of Span 85 and xylene or the mixture of Span 85 and paraffin as monomer, cross-linking agent, dispersion stabilizer and templates, respectively. The results indicate that there are dense cavities on the surface of beads, and the diameter and density of cavity are related with the composition and amount of emulsion template. The forming mechanism of cavity from thermodynamics and dynamics was proposed.
基金Supported by the National Nature Science Foundation of China(No.29736170).
文摘1 INTRODUCTIONMicroemulsion and micelle systems are wide-spread in the industry and agriculture applications,e.g.the petroleum exploitation,food industry chemical engineering and biological engineering,but so far,their properties are still not very well understood.Both micelle and microemulsion systems are dispersed systems and consist of the aggregationsof the surfactant.The difference between them is that there is dispered liquid phase in the coreof the aggregation in the case of the microemulsion,but in the micelle there is not any
文摘Fe3O4/P (NaUA-St-BA) core-shell composite micro spheres were in situ prepared by soapless polymerization of styrene and butyl acrylate, with Fe3O4magnetic colloidal particles coated with NaUA. The results of IR and XRD analysis demonstrated that the desired polymer chains have been covalently bonded to the surface of Fe3O4 nano particles. The morphology analysis by TEM confirmed that the composite particles have the core-shell structure and a relatively uniform diameter of about 100nm. The magnetic properties of the obtained composite latex particles were measured by VSM and found that they exhibited super paramagnetic properties. Finally, the prepared magnetic composite particles latex is stable for several months.