ZnS ∶Cu nanoparticles were prepared by using microemulsion method at room temperature. The size of the particles is 2-8 nm by transmission electron microscopy (TEM) and dynamic light scattering (DLS) technique. X-ray...ZnS ∶Cu nanoparticles were prepared by using microemulsion method at room temperature. The size of the particles is 2-8 nm by transmission electron microscopy (TEM) and dynamic light scattering (DLS) technique. X-ray diffraction analysis shows that the particles are cubic crystal structure, the same structure as the bulk ZnS materials. Ultraviolet absorption demonstrates an increased bandgap due to quantum confinement effect. Photoluminescence spectrum shows there is a single green emission band at 482 nm.展开更多
Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode...Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode surface. Effects of electrolytic parameters on the size of Ni particles were studied. The performances of hydrogen evolution and hydrogen storage of the Ni nanoparticles plating electrode were also investigated. The results indicate that the size of Ni nanoparticles decreases with the increase of Ni2+ concentration and the decrease of current density. The electrochemical activity of Ni nanoparticles plating electrode is much higher than that of bulk Ni electrode.展开更多
Significant progress has been made in the formulation of the functional nanomaterials with microemulsion phase.Microemulsion phase can be considered as true nanoreactors,which can be used to synthesize nanomaterials.P...Significant progress has been made in the formulation of the functional nanomaterials with microemulsion phase.Microemulsion phase can be considered as true nanoreactors,which can be used to synthesize nanomaterials.Properties and the mechanism of nanoparticle formation with microemulsion phase are reviewed in this paper.Preparation of the various nanomaterials,such as metal nanomaterials,oxide nanomaterials,magnetic nanoparticles,inorganic and inorganic compounds nanomaterials,metallic-organic composite nanomaterials,and other composite nanomaterials,are investigated with different microemulsion phases.The possible formation mechanisms are presented with the schematic diagram.展开更多
文摘ZnS ∶Cu nanoparticles were prepared by using microemulsion method at room temperature. The size of the particles is 2-8 nm by transmission electron microscopy (TEM) and dynamic light scattering (DLS) technique. X-ray diffraction analysis shows that the particles are cubic crystal structure, the same structure as the bulk ZnS materials. Ultraviolet absorption demonstrates an increased bandgap due to quantum confinement effect. Photoluminescence spectrum shows there is a single green emission band at 482 nm.
基金Projects(20673036,J0830415) supported by the National Natural Science Foundation of ChinaProject(09JJ3025) supported by Hunan Provincial Natural Science Foundation of ChinaProject(09GK3173) supported by the Planned Science and Technology Project of Hunan Province,China
文摘Ni nanoparticles plating was prepared in reverse microemulsion. The deposition was carried out through the Brownian motion of water pools in the reverse microemulsion and the adsorption of water pools on the electrode surface. Effects of electrolytic parameters on the size of Ni particles were studied. The performances of hydrogen evolution and hydrogen storage of the Ni nanoparticles plating electrode were also investigated. The results indicate that the size of Ni nanoparticles decreases with the increase of Ni2+ concentration and the decrease of current density. The electrochemical activity of Ni nanoparticles plating electrode is much higher than that of bulk Ni electrode.
文摘Significant progress has been made in the formulation of the functional nanomaterials with microemulsion phase.Microemulsion phase can be considered as true nanoreactors,which can be used to synthesize nanomaterials.Properties and the mechanism of nanoparticle formation with microemulsion phase are reviewed in this paper.Preparation of the various nanomaterials,such as metal nanomaterials,oxide nanomaterials,magnetic nanoparticles,inorganic and inorganic compounds nanomaterials,metallic-organic composite nanomaterials,and other composite nanomaterials,are investigated with different microemulsion phases.The possible formation mechanisms are presented with the schematic diagram.