The mesoscopic modeling developed rapidly in the past three decades is a promising tool for predicting and understanding the microstructure evolution at grain scale.In this paper,the recent development of mesoscopic m...The mesoscopic modeling developed rapidly in the past three decades is a promising tool for predicting and understanding the microstructure evolution at grain scale.In this paper,the recent development of mesoscopic modeling and its application to microstructure evolution in steels is reviewed.Firstly,some representative computational models are briefly introduced,e.g.,the phase field model,the cellular automaton model and the Monte Carlo model.Then,the emphasis is put on the application of mesoscopic modeling of the complex features of microstructure evolution,including solidification,solid-state phase transformation,recrystallization and grain growth.Finally,some issues in the present mesoscopic modeling and its perspective are discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 50871109 and 51001096)
文摘The mesoscopic modeling developed rapidly in the past three decades is a promising tool for predicting and understanding the microstructure evolution at grain scale.In this paper,the recent development of mesoscopic modeling and its application to microstructure evolution in steels is reviewed.Firstly,some representative computational models are briefly introduced,e.g.,the phase field model,the cellular automaton model and the Monte Carlo model.Then,the emphasis is put on the application of mesoscopic modeling of the complex features of microstructure evolution,including solidification,solid-state phase transformation,recrystallization and grain growth.Finally,some issues in the present mesoscopic modeling and its perspective are discussed.