The γ/γ' microstructure of a Re-containing Ni-based single crystal super alloy after a two-step aging was studied using scanning electron microscopy (SEM),transmission electron microscopy (TEM) and scanning tra...The γ/γ' microstructure of a Re-containing Ni-based single crystal super alloy after a two-step aging was studied using scanning electron microscopy (SEM),transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM).The crystals were grown by the floating zone (FZ) method.Both cuboidal and spherical γ' precipitates were formed after a two-step aging.The size of the cuboidal γ' phases first increased and then decreased with the extension of the second-step aging time.Re,Co and Cr strongly concentrated in the γ phase whereas Ni and Al enriched in the γ' phase.Thermodynamic calculation by JMatPro was performed to explain the experimental observations.展开更多
The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of fiv...The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of five kinds of Si-O tetrahedra Qi from these two methods was compared with each other and also with the experimental Raman spectra, an excellent agreement was achieved. These not only displayed the panorama distribution of microstructural units in the whole composition range, but also proved that the thermodynamic model is suitable for the utilization as the subsequent application model of spectral experiments for the thermodynamic calculation. Meanwhile, the five refined regions mastered by different disproportionating reactions were obtained. Finally, the distributions of two kinds of connections between Qi were obtained, denoted as Qi-Ca-Qj and Qi-[Ob]-Qj, from the thermodynamic model, and a theoretical verification was given that the dominant connections for any composition are equivalent connections.展开更多
The partial substitution of M (M=Sm, Nd, Pr) for La was performed in order to ameliorate the electrochemical hydrogen storage performance of RE–Mg–Ni-based A2B7-type electrode alloys. The La0.8–xMxMg0.2Ni3.35Al0....The partial substitution of M (M=Sm, Nd, Pr) for La was performed in order to ameliorate the electrochemical hydrogen storage performance of RE–Mg–Ni-based A2B7-type electrode alloys. The La0.8–xMxMg0.2Ni3.35Al0.1Si0.05 (M=Sm, Nd, Pr;x=0-0.4) electrode alloys were fabricated by casting and annealing and their microstructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The major phases (La, Mg)2Ni7 with the hexagonal Ce2Ni7-type structure and LaNi5 with the hexagonal CaCu5-type structure make up the basic microstructure of the experimental alloys. The discharge capacities of the as-cast and annealed alloys all gain their maximum values with the M (M=Sm, Nd, Pr) content varying. The electrochemical cycle stability of the as-cast and annealed alloys clearly rises with the M (M=Sm, Nd, Pr) content growing. Furthermore, the electrochemical kinetics of the alloys, including the high rate discharge ability, charge transfer rate, limiting current density and hydrogen diffusion coefficient, all present a increase trend at first and then decrease with the rising of M (M=Sm, Nd, Pr) content.展开更多
Fine structure and elemental composition of envelopes of 10 taxa of Trachelomonas and Strombomonas from natural freshwater bodies in China were studied and phylogeny of both genera were discussed. The results indicate...Fine structure and elemental composition of envelopes of 10 taxa of Trachelomonas and Strombomonas from natural freshwater bodies in China were studied and phylogeny of both genera were discussed. The results indicate that iron (Fe) and silicon (Si) are the primary mineral elements of the envelopes. Composition of mineral elements was uncorrelated with envelope color, however, it was highly correlated with the microarchitecture of the envelopes. Content of Si was higher than that of Fe in all species of Strombomonas and some species of Trachelomonas with rough surface. In most species of Trachelomonas, especially those with dense and smoothy surface, content of Fe was higher than that of Si. Based on the above results, we propose to assign those species of Strombomonas into Trachelomonas and consider them as a group of the latter. These species were the most primitive among the group with envelopes in Euglenaceae.展开更多
The morphologies, sizes, compositions and volume fractions of dendritic phases in in situ Ti-based metallic glass matrix composites (MGMCs) containing beryllium (Be) with the nominal composition of Tia7Zr19Cu5V12B...The morphologies, sizes, compositions and volume fractions of dendritic phases in in situ Ti-based metallic glass matrix composites (MGMCs) containing beryllium (Be) with the nominal composition of Tia7Zr19Cu5V12Be17 (mole fraction, %) were investigated using XRD, SEM, EBSD, TEM, EDS and three-dimensional reconstruction method. Moreover, visualized at the nanoscale, Be distribution is confirmed to be only present in the matrix using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS). Based on these findings, it has been obtained that the accurate chemical compositions are Wi28.3Zr19.7Cu8V6.4Be37.6 (mole fraction, %) for glass matrix and Wi62.nZr18.aCu2.6V16.6 (mole fraction, %) for the dendritic phases, and the volume fractions are 38.5% and 61.5%, respectively. It is believed that the results are of particular importance for the designing of Be-containing MGMCs.展开更多
The constitutive model of rock can be built by mechanics elements because there are many kinds of damages in rock under varied loads.It is resumed that rock contains many microstructures and a structure of Bingham.The...The constitutive model of rock can be built by mechanics elements because there are many kinds of damages in rock under varied loads.It is resumed that rock contains many microstructures and a structure of Bingham.The microstructure consists of two embranchments that are the unit of a spring and a gliding slice in series and the unit of a spring and a cementation bar in series,the two units connect each other in parallel.These microstructures are arranged disorderly or in the order of a certain state.A certain distribution of microstructures represents one type of rock.Two kinds of rock's constitutive relationship were deduced by using the model.One is the model in which many parallel microstructures and a structure of Bingham connect in series.And it is used to homogeneous rock.The other is the model in which many microstructures and a structure of Bingham connect in series.And it is used to the rock with much crack or microcrack in a certain direction.The two kinds of constitutive relationship were verified by the studied cases.The constitutive model of rock built by using mechanics elements is verified to be reasonable.Moreover,different types of rocks may be described with mechanics elements with different distributions.展开更多
Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron mic...Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron microscopy, numerical simulation methods, peel and tensile examinations. The effect of CR and FR was comparatively analyzed. The results showed that the CR and FR laminated composites exhibited different effective plastic strain distributions of the Ti layer and Cu layer at the interface. The recrystallization texture, prismatic texture and pyramidal texture were developed in the Ti layer by CR, while the R-Goss texture and shear texture were developed in the Cu layer by CR. The typical deformation texture components were developed in the Ti layer and Cu layer of FR laminated composites. The CR laminated composites had higher bond strength, tensile strength and ductility.展开更多
Effect of element cerium (Ce) on microstructure and mechanical properties of A1-Zn-Mg-Cu alloys has been investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential s...Effect of element cerium (Ce) on microstructure and mechanical properties of A1-Zn-Mg-Cu alloys has been investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and hardness test. The results show that addition of Ce can remarkably refine the as-cast grains and eutectic microstructure. A transformation from Mg(Zn,Cu,A1)2 phase to A12CuMg phase is observed during homogenization. Furthermore, the Ce addition introduces changes in the precipitation process and consequently in the age-hardening behavior of the alloy. Microstructural measurements reveal that the addition of Ce promotes the precipitation of η' phase, but it also partly retards the precipitation of GP zones. The density of precipitates decreases in a certain degree and rod-like η' precipitates increase when Ce content is from 0.2% to 0.4% (mass fraction).展开更多
Ultrafine tungsten carbide and fine cobalt as well as nano yttrium oxide powders were used as the raw materials. The effects of hot-press below the eutectic temperature and conventional liquid phase sintering on the s...Ultrafine tungsten carbide and fine cobalt as well as nano yttrium oxide powders were used as the raw materials. The effects of hot-press below the eutectic temperature and conventional liquid phase sintering on the structures and properties of WC-20Co-1Y2O3 cemented carbide were studied. It is shown that hot-pressed alloy has the character of isotropic properties and microstructure with homogeneous and ultrafine WC grains. However, the ultrafine and fully-densified structure is developed at the cost of the presence of large amount of cobalt-lake (unevenly distributed binder phase), and thus lower strength. Yttrium oxide in the alloy cannot play the role of grain growth inhibitor fully when cemented carbide with high content of cobalt and ultrafine raw materials is sintered at high liquid phase sintering temperature. Peculiar platelet-enhanced bi-model structure is formed in WC-20Co-1Y2O3 cemented carbide by conventional liquid phase sintering, which points out that yttrium oxide in the alloy facilitates the formation of plate-like WC grain.展开更多
The Mg-5Sn-1Ca-xGd (x=0, 1) alloys were chosen to investigate the change in solidification paths, phase formation and mechanical properties. The microstructure of as-cast Mg-5Sn-1Ca alloy is composed of α-Mg, Mg2Sn a...The Mg-5Sn-1Ca-xGd (x=0, 1) alloys were chosen to investigate the change in solidification paths, phase formation and mechanical properties. The microstructure of as-cast Mg-5Sn-1Ca alloy is composed of α-Mg, Mg2Sn and CaMgSn phases. With the addition of Gd, the formation of the Mg2Sn phase is impeded and the CaMgSn phase is refined, whereas the ultimate tensile strength and elongation decrease. The possible reasons for the variation in microstructure and mechanical properties were discussed.展开更多
In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cas...In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cast microstructure characteristics including grains and phases were thoroughly investigated. The results indicated that fine grain boundaries existed in these alloys and fine MgZn2phases discontinuously distributed on them. Besides,AlZnMgCu eutectic phases and Sc, Zr-containing phases with flocculent morphology were observed. As scandium contents vary from 0.06 wt.% to 0.17 wt.%, the average grain size continuously decreased and its equiaxial characteristics were strengthened. Meanwhile, the content of AlZnMgCu eutectic phase showed a decrease trend. When scandium contents were 0.20 wt.% and 0.25 wt.%, no further enhancement on grain refinement was observed, so as to the reduction of AlZnMgCu eutectic phase content. Besides, Sc, Zr-containing phases with blocky morphology were observed and the alloy with a scandium content of 0.25 wt.% possessed a larger amount of blocky Sc, Zr-containing phase than the alloy with a scandium content of 0.20 wt.%. Grain refinement and reduction of AlZnMgCu eutectic phase content associated with scandium addition were discussed.展开更多
The finite element model is established according to the experimental results,and then the experimental results are verified by simulation calculation.In terms of the combination of finite element analysis and experim...The finite element model is established according to the experimental results,and then the experimental results are verified by simulation calculation.In terms of the combination of finite element analysis and experiment,the effect of particle size of CuO and SnO_(2) on the stress,strain and microstructure of AgCuOSnO_(2) composite during hot extrusion was studied.The results illustrate that with the decrease of particle size,the dispersion of the second phase increases gradually,while the possibility of“tail shrinkage”of the billet decreases continuously;cubic CuO will evolve to fibrosis,and the degree of fibrosis will increase with the decrease of the particle size and ring clusters.Specifically,the degree of fibrosis at the middle end of the billet is higher than that at the front end,the degree of fibrosis at the front end is higher than that at the back end,and the degree of fibrosis on the surface is higher than that in the core;part of CuO fibers will bend,and the degree of buckling strength is positively correlated with the size of particles and their annular clusters.Additionally,there is fiber CuO in the front and back end of the billet that are inconsistent with the extrusion direction,and the degree of difference was negatively correlated with the particle size.展开更多
The finite-element (FE) model and the Rosenthal equation are used to study the thermal and microstructural phenomena in the laser powder-bed fusion of lnconel 718. A primary aim is to comprehend the advantages and d...The finite-element (FE) model and the Rosenthal equation are used to study the thermal and microstructural phenomena in the laser powder-bed fusion of lnconel 718. A primary aim is to comprehend the advantages and disadvantages of the Rosenthal equation (which provides an analytical alternative to FE analysis), and to investigate the influence of underlying assumptions on estimated results. Various physical characteristics are compared among the FE model, Rosenthal equation, and experiments. The predicted melt pool shapes compared with reported experimental results from the literature show that both the FE model and the analytical (Rosenthal) equation provide a reasonably accurate estimation. At high heat input, under conditions leading to keyholing, the reported melt width is narrower than predicted by the analytical equation. Moreover, a sensitivity analysis based on choices of the absorptivity is performed, which shows that the Rosenthal approach is more sensitive to absorptivity, compared with the FE approach. The primary reason could be the effect of radiative and convective losses, which are assumed to be negligible in the Rosenthal equation. In addition, both methods predict a columnar solidification microstructure, which agrees well with experimental reports, and the primary dendrite arm spacing (PDAS) predicted with the two approaches is comparable with measurements.展开更多
This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of exper...This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of experiment was used to arrange finite element analyses and experimental tests.Numerical and experimental tests were executed by changing rotary speed,feed rate and die angle.Taguchi design results show that increasing feed rate and decreasing rotary speed enhance Zener-Hollomon(Z)parameter and decrease average grain size,while die angle has no considerable effect.Increasing Z value reduces grain size and enhances flow stress of the processed samples,while the experiment with the highest Z value refines initial microstructure from 40 to 8μm and increases flow stress by 5 times.展开更多
基金Project(08dj1400402) supported by the Major Program for the Fundamental Research of Science and Technology Committee of the Shanghai Municipality,ChinaProject(09ZZ16) supported by Innovation Program of Shanghai Municipal Education Committee,China
文摘The γ/γ' microstructure of a Re-containing Ni-based single crystal super alloy after a two-step aging was studied using scanning electron microscopy (SEM),transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM).The crystals were grown by the floating zone (FZ) method.Both cuboidal and spherical γ' precipitates were formed after a two-step aging.The size of the cuboidal γ' phases first increased and then decreased with the extension of the second-step aging time.Re,Co and Cr strongly concentrated in the γ phase whereas Ni and Al enriched in the γ' phase.Thermodynamic calculation by JMatPro was performed to explain the experimental observations.
基金Project(2012CB722805)supported by the National Basic Research Program of ChinaProjects(50504010,50974083,51174131,51374141)supported by the National Natural Science Foundation of China+1 种基金Project(50774112)supported by the Joint Fund of NSFC and Baosteel,ChinaProject(07QA4021)supported by the Shanghai"Phosphor"Science Foundation,China
文摘The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of five kinds of Si-O tetrahedra Qi from these two methods was compared with each other and also with the experimental Raman spectra, an excellent agreement was achieved. These not only displayed the panorama distribution of microstructural units in the whole composition range, but also proved that the thermodynamic model is suitable for the utilization as the subsequent application model of spectral experiments for the thermodynamic calculation. Meanwhile, the five refined regions mastered by different disproportionating reactions were obtained. Finally, the distributions of two kinds of connections between Qi were obtained, denoted as Qi-Ca-Qj and Qi-[Ob]-Qj, from the thermodynamic model, and a theoretical verification was given that the dominant connections for any composition are equivalent connections.
基金Projects(51161015,51371094)supported by the National Natural Science Foundations of China
文摘The partial substitution of M (M=Sm, Nd, Pr) for La was performed in order to ameliorate the electrochemical hydrogen storage performance of RE–Mg–Ni-based A2B7-type electrode alloys. The La0.8–xMxMg0.2Ni3.35Al0.1Si0.05 (M=Sm, Nd, Pr;x=0-0.4) electrode alloys were fabricated by casting and annealing and their microstructures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The major phases (La, Mg)2Ni7 with the hexagonal Ce2Ni7-type structure and LaNi5 with the hexagonal CaCu5-type structure make up the basic microstructure of the experimental alloys. The discharge capacities of the as-cast and annealed alloys all gain their maximum values with the M (M=Sm, Nd, Pr) content varying. The electrochemical cycle stability of the as-cast and annealed alloys clearly rises with the M (M=Sm, Nd, Pr) content growing. Furthermore, the electrochemical kinetics of the alloys, including the high rate discharge ability, charge transfer rate, limiting current density and hydrogen diffusion coefficient, all present a increase trend at first and then decrease with the rising of M (M=Sm, Nd, Pr) content.
文摘Fine structure and elemental composition of envelopes of 10 taxa of Trachelomonas and Strombomonas from natural freshwater bodies in China were studied and phylogeny of both genera were discussed. The results indicate that iron (Fe) and silicon (Si) are the primary mineral elements of the envelopes. Composition of mineral elements was uncorrelated with envelope color, however, it was highly correlated with the microarchitecture of the envelopes. Content of Si was higher than that of Fe in all species of Strombomonas and some species of Trachelomonas with rough surface. In most species of Trachelomonas, especially those with dense and smoothy surface, content of Fe was higher than that of Si. Based on the above results, we propose to assign those species of Strombomonas into Trachelomonas and consider them as a group of the latter. These species were the most primitive among the group with envelopes in Euglenaceae.
基金Project(11374028)supported by the National Natural Science Foundation of ChinaProject supported by the Cheung Kong Scholars Program of China
文摘The morphologies, sizes, compositions and volume fractions of dendritic phases in in situ Ti-based metallic glass matrix composites (MGMCs) containing beryllium (Be) with the nominal composition of Tia7Zr19Cu5V12Be17 (mole fraction, %) were investigated using XRD, SEM, EBSD, TEM, EDS and three-dimensional reconstruction method. Moreover, visualized at the nanoscale, Be distribution is confirmed to be only present in the matrix using scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS). Based on these findings, it has been obtained that the accurate chemical compositions are Wi28.3Zr19.7Cu8V6.4Be37.6 (mole fraction, %) for glass matrix and Wi62.nZr18.aCu2.6V16.6 (mole fraction, %) for the dendritic phases, and the volume fractions are 38.5% and 61.5%, respectively. It is believed that the results are of particular importance for the designing of Be-containing MGMCs.
基金Projects(10472134,50490274) supported by the National Natural Science Foundation of China
文摘The constitutive model of rock can be built by mechanics elements because there are many kinds of damages in rock under varied loads.It is resumed that rock contains many microstructures and a structure of Bingham.The microstructure consists of two embranchments that are the unit of a spring and a gliding slice in series and the unit of a spring and a cementation bar in series,the two units connect each other in parallel.These microstructures are arranged disorderly or in the order of a certain state.A certain distribution of microstructures represents one type of rock.Two kinds of rock's constitutive relationship were deduced by using the model.One is the model in which many parallel microstructures and a structure of Bingham connect in series.And it is used to homogeneous rock.The other is the model in which many microstructures and a structure of Bingham connect in series.And it is used to the rock with much crack or microcrack in a certain direction.The two kinds of constitutive relationship were verified by the studied cases.The constitutive model of rock built by using mechanics elements is verified to be reasonable.Moreover,different types of rocks may be described with mechanics elements with different distributions.
基金financially supported by the National Key R&D Program of China (No.2018YFA0707300)the Natural Science Foundation of Shanxi Province,China (No.201801D221131)+2 种基金the National Natural Science Foundation of China (Nos.51905372,51904206,51805359,52075359)Shanxi Province Science and Technology Major Project,China (No.20181102011)China Postdoctoral Science Foundation (No.2020M670705)。
文摘Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron microscopy, numerical simulation methods, peel and tensile examinations. The effect of CR and FR was comparatively analyzed. The results showed that the CR and FR laminated composites exhibited different effective plastic strain distributions of the Ti layer and Cu layer at the interface. The recrystallization texture, prismatic texture and pyramidal texture were developed in the Ti layer by CR, while the R-Goss texture and shear texture were developed in the Cu layer by CR. The typical deformation texture components were developed in the Ti layer and Cu layer of FR laminated composites. The CR laminated composites had higher bond strength, tensile strength and ductility.
基金Project(2010CB731706) supported by the National Basic Research Program of China
文摘Effect of element cerium (Ce) on microstructure and mechanical properties of A1-Zn-Mg-Cu alloys has been investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and hardness test. The results show that addition of Ce can remarkably refine the as-cast grains and eutectic microstructure. A transformation from Mg(Zn,Cu,A1)2 phase to A12CuMg phase is observed during homogenization. Furthermore, the Ce addition introduces changes in the precipitation process and consequently in the age-hardening behavior of the alloy. Microstructural measurements reveal that the addition of Ce promotes the precipitation of η' phase, but it also partly retards the precipitation of GP zones. The density of precipitates decreases in a certain degree and rod-like η' precipitates increase when Ce content is from 0.2% to 0.4% (mass fraction).
文摘Ultrafine tungsten carbide and fine cobalt as well as nano yttrium oxide powders were used as the raw materials. The effects of hot-press below the eutectic temperature and conventional liquid phase sintering on the structures and properties of WC-20Co-1Y2O3 cemented carbide were studied. It is shown that hot-pressed alloy has the character of isotropic properties and microstructure with homogeneous and ultrafine WC grains. However, the ultrafine and fully-densified structure is developed at the cost of the presence of large amount of cobalt-lake (unevenly distributed binder phase), and thus lower strength. Yttrium oxide in the alloy cannot play the role of grain growth inhibitor fully when cemented carbide with high content of cobalt and ultrafine raw materials is sintered at high liquid phase sintering temperature. Peculiar platelet-enhanced bi-model structure is formed in WC-20Co-1Y2O3 cemented carbide by conventional liquid phase sintering, which points out that yttrium oxide in the alloy facilitates the formation of plate-like WC grain.
基金Project(2007CB613704) supported by National Basic Research Program of China
文摘The Mg-5Sn-1Ca-xGd (x=0, 1) alloys were chosen to investigate the change in solidification paths, phase formation and mechanical properties. The microstructure of as-cast Mg-5Sn-1Ca alloy is composed of α-Mg, Mg2Sn and CaMgSn phases. With the addition of Gd, the formation of the Mg2Sn phase is impeded and the CaMgSn phase is refined, whereas the ultimate tensile strength and elongation decrease. The possible reasons for the variation in microstructure and mechanical properties were discussed.
基金Projects(2020YFB0311400ZL, 2020YFF0218202) supported by the National Key R&D Program of ChinaProject supported by Youth Fund Project of GRINM Group Co.,Ltd.,China。
文摘In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cast microstructure characteristics including grains and phases were thoroughly investigated. The results indicated that fine grain boundaries existed in these alloys and fine MgZn2phases discontinuously distributed on them. Besides,AlZnMgCu eutectic phases and Sc, Zr-containing phases with flocculent morphology were observed. As scandium contents vary from 0.06 wt.% to 0.17 wt.%, the average grain size continuously decreased and its equiaxial characteristics were strengthened. Meanwhile, the content of AlZnMgCu eutectic phase showed a decrease trend. When scandium contents were 0.20 wt.% and 0.25 wt.%, no further enhancement on grain refinement was observed, so as to the reduction of AlZnMgCu eutectic phase content. Besides, Sc, Zr-containing phases with blocky morphology were observed and the alloy with a scandium content of 0.25 wt.% possessed a larger amount of blocky Sc, Zr-containing phase than the alloy with a scandium content of 0.20 wt.%. Grain refinement and reduction of AlZnMgCu eutectic phase content associated with scandium addition were discussed.
基金Project(2017FA027)supported by the Key Project of Science and Technology of Yunnan Province,China。
文摘The finite element model is established according to the experimental results,and then the experimental results are verified by simulation calculation.In terms of the combination of finite element analysis and experiment,the effect of particle size of CuO and SnO_(2) on the stress,strain and microstructure of AgCuOSnO_(2) composite during hot extrusion was studied.The results illustrate that with the decrease of particle size,the dispersion of the second phase increases gradually,while the possibility of“tail shrinkage”of the billet decreases continuously;cubic CuO will evolve to fibrosis,and the degree of fibrosis will increase with the decrease of the particle size and ring clusters.Specifically,the degree of fibrosis at the middle end of the billet is higher than that at the front end,the degree of fibrosis at the front end is higher than that at the back end,and the degree of fibrosis on the surface is higher than that in the core;part of CuO fibers will bend,and the degree of buckling strength is positively correlated with the size of particles and their annular clusters.Additionally,there is fiber CuO in the front and back end of the billet that are inconsistent with the extrusion direction,and the degree of difference was negatively correlated with the particle size.
基金support from the Royal Thai Government and the Bertucci Graduate Fellowship for this research. P. Chris Pistoriussupport from Early Stage Innovations under National Aeronautics and Space Administration (NASA)’s Space Technology Research Grants Program (NNX 17AD03G)
文摘The finite-element (FE) model and the Rosenthal equation are used to study the thermal and microstructural phenomena in the laser powder-bed fusion of lnconel 718. A primary aim is to comprehend the advantages and disadvantages of the Rosenthal equation (which provides an analytical alternative to FE analysis), and to investigate the influence of underlying assumptions on estimated results. Various physical characteristics are compared among the FE model, Rosenthal equation, and experiments. The predicted melt pool shapes compared with reported experimental results from the literature show that both the FE model and the analytical (Rosenthal) equation provide a reasonably accurate estimation. At high heat input, under conditions leading to keyholing, the reported melt width is narrower than predicted by the analytical equation. Moreover, a sensitivity analysis based on choices of the absorptivity is performed, which shows that the Rosenthal approach is more sensitive to absorptivity, compared with the FE approach. The primary reason could be the effect of radiative and convective losses, which are assumed to be negligible in the Rosenthal equation. In addition, both methods predict a columnar solidification microstructure, which agrees well with experimental reports, and the primary dendrite arm spacing (PDAS) predicted with the two approaches is comparable with measurements.
文摘This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of experiment was used to arrange finite element analyses and experimental tests.Numerical and experimental tests were executed by changing rotary speed,feed rate and die angle.Taguchi design results show that increasing feed rate and decreasing rotary speed enhance Zener-Hollomon(Z)parameter and decrease average grain size,while die angle has no considerable effect.Increasing Z value reduces grain size and enhances flow stress of the processed samples,while the experiment with the highest Z value refines initial microstructure from 40 to 8μm and increases flow stress by 5 times.