The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd na...The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd nanoparticles are deposited on the hollow microspheres through an aqueous-solution reduction of PdCl2 with NaBH4 at room temperature. The results of TEM, XRD, and EDS show that the Pd nanoparticles are coated on the surface ofα-MnO2 nanoneedles uniformly and the mass fraction of Pd in the Pd-coated α-MnO2 catalyst is about 8.88%. Compared with the counterpart of the hollow α-MnO2 catalyst, the hollow Pd-coated α-MnO2 catalyst improves the energy conversion efficiency and the charge-discharge cycling performance of the air electrode. The initial specific discharge capacity of an air electrode composed of Super P carbon and the as-prepared Pd-coatedα-MnO2 catalyst is 1220 mA·h/g (based on the total electrode mass) at a current density of 0.1 mA/cm2, and the capacity retention rate is about 47.3% after 13 charge-discharge cycles. The results of charge-discharge cycling tests demonstrate that this novel Pd-coatedα-MnO2 catalyst with a hierarchical core-shell structure is a promising catalyst for the lithium-air battery.展开更多
The dynamic changes of nucleolar ultrastructure in the cell cycle of Physarum polycephalum Schw. were studied by an en bloc silver-staining method. The results showed that the nucleolus was large in size and situated ...The dynamic changes of nucleolar ultrastructure in the cell cycle of Physarum polycephalum Schw. were studied by an en bloc silver-staining method. The results showed that the nucleolus was large in size and situated in the center of the nucleus in late G(2)-phase, and the fibrillar centers, dense fibrillar components and granular components could be observed in the nucleolus. During prophase, the nucleolus moved towards the periphery of the nucleus and in late prophase disintegrated near the nuclear envelope. in metaphase, the disintegrated nucleolar components were dispersed in masses and located at the periphery of the chromosomal region of the nucleus. No specifically silver-stained area and argentophilic protein sheath were observed on the chromosomes, but there were some big dispersed silver particles within the chromosomes. During telophase the nucleolar components moved towards the two poles along with the chromosomes and co-existed with the decondensing chromatin in daughter nuclei. The nucleolar components then gradually converged with one another and separated from the chromatin. A big nucleolus was formed in the nucleus about 120 min after the completion of mitosis.展开更多
Although a growing number of both sequence-based and microsatellite nuclear loci have been used to infer genetic structures, their relative efficiencies remain poorly understood. In our study, we used the Green-backed...Although a growing number of both sequence-based and microsatellite nuclear loci have been used to infer genetic structures, their relative efficiencies remain poorly understood. In our study, we used the Green-backed Tit (Parus monticolus) to explore the resolving ability of these two types of markers. The south-western and central mitochondrial DNA (mtDNA) phylogroups were divergent to some extent in sequence-based nuclear data, while mixed together in microsatellites data. The F ST values among clades were about four times lower in microsatellite loci than those in sequence-based nuclear loci. We are of the opinion that size homoplasy may have contributed to the inability of microsatellites to uncover differentiation. Our results suggest that sequence-based nuclear loci outperformed microsatellite loci in detecting population structures, especially those focused on populations with large effective population sizes. There was no significant correlation between F ST values and allelic size variability, which suggested that the efficiency of microsatellite loci in detecting genetic structure may be independent of their polymorphism. F ST is better than R ST in detecting intraspecific divergence due to the high variance of R ST . In agreement with sequence-based nuclear loci, microsatellite loci did resolve the genetic distinctness of the Taiwan Residents phylogroup. The genetic differentiation between the Taiwan Residents and continental clades may involve allopatric divergence without gene flow.展开更多
The structure of the nuclosome core particle of chromatin in chicken erythrocytes has been examined by usingAFM. The 146 hp of DNA wrapped twice around the corehistone octamer are clearly visualized. Both the ends ofe...The structure of the nuclosome core particle of chromatin in chicken erythrocytes has been examined by usingAFM. The 146 hp of DNA wrapped twice around the corehistone octamer are clearly visualized. Both the ends ofentry/exit of linker DNA are also demonstrated. The dimension of the nucleosome core particles is- 1-4 um inheight and ~13-22 um in width. In addition, superbeads(width of - 48-57 urn, beight of-2-3 nm) are occasionallyrevealed, two turns of DNA around the core particles arealso detected.展开更多
The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These t...The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These techniques, such as X-ray tomography, could be applied for quality monitoring in the macadamia industry. The objectives of this study were to investigate the browning centre symptoms that usually occur in macadamia nuts-in-shell. The applied techniques included confocal microscopy, X-ray tomography and magnetic resonance imaging (MRI). Five different varieties of macadamia nuts (A38, 246, 816, 842 and Daddow) were selected to include distinct characteristics, such as drop pattern and growing location. Analysis of the microstructure of kernels by confocal microscopy showed the distribution of possible brown pigment compounds as well as the distribution of lipids, carbohydrates and proteins inside macadamia cells. Physical properties data, including shell density and seed to volume ratio, were obtained by X-ray tomography. Magnetic resonance diffusion tensor imaging used in this study showed marked differences in microstructure which indicate that different varieties exhibit different microstructures expressed as fraction ofanisotropy and apparent diffusion coefficient that appear to be related to the occurrence of the brown centre. Hence, the findings of this study have potential to improve the existing postharvest techniques used in the macadamia processing industry. They will be of benefit to the industry in terms of improved quality control and cost reduction.展开更多
Nanoparticles with typical core-shell structure were prepared with a blend of methoxypoly(ethylene glycol)-poly(lactide) copolymer (MPEG-PLA) and poly (lactic acid) (PLA) along with paclitaxel by the O/W sol...Nanoparticles with typical core-shell structure were prepared with a blend of methoxypoly(ethylene glycol)-poly(lactide) copolymer (MPEG-PLA) and poly (lactic acid) (PLA) along with paclitaxel by the O/W solvent evaporation method. An orthogonal experiment L9(3)3 was applied to get the best preparation conditions. The core-shell paclitaxel-loaded MPEG-PLA/PLA nanoparticles with the highest drug loading efficiency were obtained when amount of MPEG-PLA, time of ultrasonication and volume of deionized water were 300 mg, 10 rain and 30 mL, respectively. The release behavior of paclitaxel from the optimal MPEG-PLA/PLA nanoparticles showed that 22% ofpaclitaxel was released in 14 d. When incubating with human nasopharyngeal carcinoma ceils expressing LMP 1, these optimal nanoparticles showed a little lower tumor growth compared with free paclitaxel.展开更多
Polylactide(PLA) microspheres were prepared using the solid-in-oil(S/O) spray-drying method to achieve the sustained release of a hydrophilic drug for the treatment of tuberculosis, via intratracheal instillation. Iso...Polylactide(PLA) microspheres were prepared using the solid-in-oil(S/O) spray-drying method to achieve the sustained release of a hydrophilic drug for the treatment of tuberculosis, via intratracheal instillation. Isoniazid(IN), a low-molecular-weight hydrophilic drug, was used as a model drug. The effects of various sizes of micronized IN powder, different drug/polymer ratios, spray-drying process parameters, and drug-release characteristics were studied to optimize the manufacturing parameters. A high entrapment efficiency(87.3%) was obtained using this method; furthermore, the microspheres were spherical and smooth. They were individually and homogenously distributed, with a mean diameter of 5.6 μm; furthermore, they showed a satisfactory extended sustained-release phase. After administration of the microspheres to rats, pulmonary drug concentrations were maintained at a relatively stable level for up to 4 weeks.展开更多
ZnO:Cu/ZnO core/shell nanocrystals are synthesized by a two-step solution-phase process. The morphology, structure and optical properties of the samples are detected by scanning electron microscopy, Raman, absorption ...ZnO:Cu/ZnO core/shell nanocrystals are synthesized by a two-step solution-phase process. The morphology, structure and optical properties of the samples are detected by scanning electron microscopy, Raman, absorption and luminescence spectroscopy. The increase of particle size confirms the growth of ZnO shell. The segregation of CuO phase observed in ZnO: Cu core is not detected in ZnO:Cu/ZnO core/shell nanocrystals from Raman spectra. It is suggested that some Cu ions can be segregated from ZnO nanocrystals, and the separated Cu ions can be incorporated inside ZnO shell after the growth of ZnO shell. The visible emission mechanism is discussed in detail, and the photoluminescence analysis indicates that the core/shell structure helps to eliminate the surface-related emission.展开更多
CNTs with core-shell structure were successfully synthesized by a microwave-assisted polyol method,and magnetic Ni nanoparticles were employed as a catalyst. The preparation method is fast and simple. The structures,m...CNTs with core-shell structure were successfully synthesized by a microwave-assisted polyol method,and magnetic Ni nanoparticles were employed as a catalyst. The preparation method is fast and simple. The structures,morphology and magnetic properties of the as-synthesized samples were investigated using Raman spectrometer,X-ray diffraction (XRD),transmission electron microscopy (TEM),vibrating sample magnetometer (VSM),respectively. The XRD results suggested that Ni particles used as a catalyst in our experiment were nano-sized. In this paper,magnetic Ni nanoparticles were employed as a catalyst,and an electric spark on metal Ni nanoparticles with the microwave eddy current effect could induce CNTs’ formation with the further reaction. The length of hollow carbon nanotubes was micro-sized and the diameters of most of the CNTs were varying from 18 to 20 nm according to the TEM images. Magnetic measurements demonstrated that CNTs with core-shell structure indicated a characteristic ferromagnetic behavior compared with Ni nanoparticles.展开更多
Microparticles have a demonstrated value for drug delivery systems. The attempts to develop this tech- nology focus on the generation of featured microparticles for improving the function of the systems. Here, we pres...Microparticles have a demonstrated value for drug delivery systems. The attempts to develop this tech- nology focus on the generation of featured microparticles for improving the function of the systems. Here, we present a new type of microparticles with gelatin methacrylate (GelMa) cores and poly(L-lactide-co-glycolide) (PLGA) shells for syn- ergistic and sustained drug delivery applications. The mi- croparticles were fabricated by using GelMa aqueous solu- tion and PLGA oil solution as the raw materials of the mi- croflnidic double emulsion templates, in which hydrophilic and hydrophobic actives, such as doxorubicin hydrochloride (DOX, hydrophilic) and camptothecine (CPT, hydrophobic), could be loaded respectively. As the inner cores were poly- merized in the microfluidics when the double emulsions were formed, the hydrophilic actives could be trapped in the cores with high efficiency, and the rupture or fusion of the cores could be avoided during the solidification of the micropar- ticle shells with other actives. The size and component of the microparticles can be easily and precisely adjusted by ma- nipulating the flow solutions during the microfluidic emulsi- fication. Because of the solid structure of the resultant mi- croparticles, the encapsulated actives were released from the delivery systems only with the degradation of the biopolymer layers, and thus the burst release of the actives was avoided. These features of the microparticles make them ideal for drug delivery applications.展开更多
基金Project(20973124)supported by the National Natural Science Foundation of ChinaProject(KLAEMC-OP201101)supported by the Open Project of Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education(Nankai University),China
文摘The hollow α-MnO2 nanoneedle-based microspheres coated with Pd nanoparticles were reported as a novel catalyst for rechargeable lithium-air batteries. The hollow microspheres are composed ofα-MnO2 nanoneedles. Pd nanoparticles are deposited on the hollow microspheres through an aqueous-solution reduction of PdCl2 with NaBH4 at room temperature. The results of TEM, XRD, and EDS show that the Pd nanoparticles are coated on the surface ofα-MnO2 nanoneedles uniformly and the mass fraction of Pd in the Pd-coated α-MnO2 catalyst is about 8.88%. Compared with the counterpart of the hollow α-MnO2 catalyst, the hollow Pd-coated α-MnO2 catalyst improves the energy conversion efficiency and the charge-discharge cycling performance of the air electrode. The initial specific discharge capacity of an air electrode composed of Super P carbon and the as-prepared Pd-coatedα-MnO2 catalyst is 1220 mA·h/g (based on the total electrode mass) at a current density of 0.1 mA/cm2, and the capacity retention rate is about 47.3% after 13 charge-discharge cycles. The results of charge-discharge cycling tests demonstrate that this novel Pd-coatedα-MnO2 catalyst with a hierarchical core-shell structure is a promising catalyst for the lithium-air battery.
文摘The dynamic changes of nucleolar ultrastructure in the cell cycle of Physarum polycephalum Schw. were studied by an en bloc silver-staining method. The results showed that the nucleolus was large in size and situated in the center of the nucleus in late G(2)-phase, and the fibrillar centers, dense fibrillar components and granular components could be observed in the nucleolus. During prophase, the nucleolus moved towards the periphery of the nucleus and in late prophase disintegrated near the nuclear envelope. in metaphase, the disintegrated nucleolar components were dispersed in masses and located at the periphery of the chromosomal region of the nucleus. No specifically silver-stained area and argentophilic protein sheath were observed on the chromosomes, but there were some big dispersed silver particles within the chromosomes. During telophase the nucleolar components moved towards the two poles along with the chromosomes and co-existed with the decondensing chromatin in daughter nuclei. The nucleolar components then gradually converged with one another and separated from the chromatin. A big nucleolus was formed in the nucleus about 120 min after the completion of mitosis.
基金supported by the National Science Fund for Distinguished Young Scientists (No. 30925008)the Major International (Regional) Joint Research Project (No. 31010103901)+1 种基金the CAS-IOZ Innovation Program (KSCX2-EW-J-2) by a grant (No. O529YX5105) from the Key Laboratory of the Zoological Systematics and Evolution of the Chinese Academy of Sciences to F.M. Lei
文摘Although a growing number of both sequence-based and microsatellite nuclear loci have been used to infer genetic structures, their relative efficiencies remain poorly understood. In our study, we used the Green-backed Tit (Parus monticolus) to explore the resolving ability of these two types of markers. The south-western and central mitochondrial DNA (mtDNA) phylogroups were divergent to some extent in sequence-based nuclear data, while mixed together in microsatellites data. The F ST values among clades were about four times lower in microsatellite loci than those in sequence-based nuclear loci. We are of the opinion that size homoplasy may have contributed to the inability of microsatellites to uncover differentiation. Our results suggest that sequence-based nuclear loci outperformed microsatellite loci in detecting population structures, especially those focused on populations with large effective population sizes. There was no significant correlation between F ST values and allelic size variability, which suggested that the efficiency of microsatellite loci in detecting genetic structure may be independent of their polymorphism. F ST is better than R ST in detecting intraspecific divergence due to the high variance of R ST . In agreement with sequence-based nuclear loci, microsatellite loci did resolve the genetic distinctness of the Taiwan Residents phylogroup. The genetic differentiation between the Taiwan Residents and continental clades may involve allopatric divergence without gene flow.
文摘The structure of the nuclosome core particle of chromatin in chicken erythrocytes has been examined by usingAFM. The 146 hp of DNA wrapped twice around the corehistone octamer are clearly visualized. Both the ends ofentry/exit of linker DNA are also demonstrated. The dimension of the nucleosome core particles is- 1-4 um inheight and ~13-22 um in width. In addition, superbeads(width of - 48-57 urn, beight of-2-3 nm) are occasionallyrevealed, two turns of DNA around the core particles arealso detected.
文摘The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These techniques, such as X-ray tomography, could be applied for quality monitoring in the macadamia industry. The objectives of this study were to investigate the browning centre symptoms that usually occur in macadamia nuts-in-shell. The applied techniques included confocal microscopy, X-ray tomography and magnetic resonance imaging (MRI). Five different varieties of macadamia nuts (A38, 246, 816, 842 and Daddow) were selected to include distinct characteristics, such as drop pattern and growing location. Analysis of the microstructure of kernels by confocal microscopy showed the distribution of possible brown pigment compounds as well as the distribution of lipids, carbohydrates and proteins inside macadamia cells. Physical properties data, including shell density and seed to volume ratio, were obtained by X-ray tomography. Magnetic resonance diffusion tensor imaging used in this study showed marked differences in microstructure which indicate that different varieties exhibit different microstructures expressed as fraction ofanisotropy and apparent diffusion coefficient that appear to be related to the occurrence of the brown centre. Hence, the findings of this study have potential to improve the existing postharvest techniques used in the macadamia processing industry. They will be of benefit to the industry in terms of improved quality control and cost reduction.
基金Key Research Foundation of Wannan Medical College(Grant No.WK2014Z06)Doctoral Starting-up Foundation of Wannan Medical College(Grant No.201219)
文摘Nanoparticles with typical core-shell structure were prepared with a blend of methoxypoly(ethylene glycol)-poly(lactide) copolymer (MPEG-PLA) and poly (lactic acid) (PLA) along with paclitaxel by the O/W solvent evaporation method. An orthogonal experiment L9(3)3 was applied to get the best preparation conditions. The core-shell paclitaxel-loaded MPEG-PLA/PLA nanoparticles with the highest drug loading efficiency were obtained when amount of MPEG-PLA, time of ultrasonication and volume of deionized water were 300 mg, 10 rain and 30 mL, respectively. The release behavior of paclitaxel from the optimal MPEG-PLA/PLA nanoparticles showed that 22% ofpaclitaxel was released in 14 d. When incubating with human nasopharyngeal carcinoma ceils expressing LMP 1, these optimal nanoparticles showed a little lower tumor growth compared with free paclitaxel.
基金supported by the 12th Five-Year Important National Science & Technology Specific Projectsthe National Science & Technology Major Special Project on the Prevention and Cure of Acquired Immune Deficiency Syndrome and Virus Hepatitis (2012ZX10003009-001-002)
文摘Polylactide(PLA) microspheres were prepared using the solid-in-oil(S/O) spray-drying method to achieve the sustained release of a hydrophilic drug for the treatment of tuberculosis, via intratracheal instillation. Isoniazid(IN), a low-molecular-weight hydrophilic drug, was used as a model drug. The effects of various sizes of micronized IN powder, different drug/polymer ratios, spray-drying process parameters, and drug-release characteristics were studied to optimize the manufacturing parameters. A high entrapment efficiency(87.3%) was obtained using this method; furthermore, the microspheres were spherical and smooth. They were individually and homogenously distributed, with a mean diameter of 5.6 μm; furthermore, they showed a satisfactory extended sustained-release phase. After administration of the microspheres to rats, pulmonary drug concentrations were maintained at a relatively stable level for up to 4 weeks.
基金supported by the National Natural Science Foundation of China (Nos.60877029,10904109,60977035 and 60907021)the Natural Science Foundation of Tianjin (No.09JCYBJC01400)the Tianjin Key Subject for Materials Physics and Chemistry
文摘ZnO:Cu/ZnO core/shell nanocrystals are synthesized by a two-step solution-phase process. The morphology, structure and optical properties of the samples are detected by scanning electron microscopy, Raman, absorption and luminescence spectroscopy. The increase of particle size confirms the growth of ZnO shell. The segregation of CuO phase observed in ZnO: Cu core is not detected in ZnO:Cu/ZnO core/shell nanocrystals from Raman spectra. It is suggested that some Cu ions can be segregated from ZnO nanocrystals, and the separated Cu ions can be incorporated inside ZnO shell after the growth of ZnO shell. The visible emission mechanism is discussed in detail, and the photoluminescence analysis indicates that the core/shell structure helps to eliminate the surface-related emission.
基金supported by the National Natural Science Foundation of China (Grant Nos.50672001,51072002)the "211" Project of Anhui University
文摘CNTs with core-shell structure were successfully synthesized by a microwave-assisted polyol method,and magnetic Ni nanoparticles were employed as a catalyst. The preparation method is fast and simple. The structures,morphology and magnetic properties of the as-synthesized samples were investigated using Raman spectrometer,X-ray diffraction (XRD),transmission electron microscopy (TEM),vibrating sample magnetometer (VSM),respectively. The XRD results suggested that Ni particles used as a catalyst in our experiment were nano-sized. In this paper,magnetic Ni nanoparticles were employed as a catalyst,and an electric spark on metal Ni nanoparticles with the microwave eddy current effect could induce CNTs’ formation with the further reaction. The length of hollow carbon nanotubes was micro-sized and the diameters of most of the CNTs were varying from 18 to 20 nm according to the TEM images. Magnetic measurements demonstrated that CNTs with core-shell structure indicated a characteristic ferromagnetic behavior compared with Ni nanoparticles.
基金supported by the National Natural Science Foundation of China (21473029 and 51522302) the NSAF Foundation of China (U1530260)+4 种基金the National Science Foundation of Jiangsu (BK20140028) the Program for New Century Excellent Talents in Universitythe Scientific Research Foundation of Southeast UniversityFoundation of Jiangsu Cancer Hospital (ZN201609)Beijing Medical Award Foundation (YJHYXKYJJ-433)
文摘Microparticles have a demonstrated value for drug delivery systems. The attempts to develop this tech- nology focus on the generation of featured microparticles for improving the function of the systems. Here, we present a new type of microparticles with gelatin methacrylate (GelMa) cores and poly(L-lactide-co-glycolide) (PLGA) shells for syn- ergistic and sustained drug delivery applications. The mi- croparticles were fabricated by using GelMa aqueous solu- tion and PLGA oil solution as the raw materials of the mi- croflnidic double emulsion templates, in which hydrophilic and hydrophobic actives, such as doxorubicin hydrochloride (DOX, hydrophilic) and camptothecine (CPT, hydrophobic), could be loaded respectively. As the inner cores were poly- merized in the microfluidics when the double emulsions were formed, the hydrophilic actives could be trapped in the cores with high efficiency, and the rupture or fusion of the cores could be avoided during the solidification of the micropar- ticle shells with other actives. The size and component of the microparticles can be easily and precisely adjusted by ma- nipulating the flow solutions during the microfluidic emulsi- fication. Because of the solid structure of the resultant mi- croparticles, the encapsulated actives were released from the delivery systems only with the degradation of the biopolymer layers, and thus the burst release of the actives was avoided. These features of the microparticles make them ideal for drug delivery applications.