在未来可再生电能传输和管理微网(future renewable electric energy delivery and management,FREEDM)中固态变压器间会因输出电压偏差及输出阻抗的不匹配而产生环流,孤岛模式下尤为严重,为此,在下垂控制器中引入固态变压器(solid stat...在未来可再生电能传输和管理微网(future renewable electric energy delivery and management,FREEDM)中固态变压器间会因输出电压偏差及输出阻抗的不匹配而产生环流,孤岛模式下尤为严重,为此,在下垂控制器中引入固态变压器(solid state transformer,SST)间输出电压偏差反馈调节,减小输出电压相角差和幅值差;采用基于模糊控制理论的瞬时环流反馈,进行动态虚拟阻抗调节,使得SST输出阻抗按额定功率精确匹配。仿真及分析表明,电压偏差反馈调节配合动态虚拟阻抗控制可以有效地抑制SST间环流,同时提高SST输出电压的稳定性。展开更多
Microgrids integrate distributed renewable energy resources, controllable loads and energy storage in a more economic and reliable fashion. Battery energy storage units are essential for microgrid operation, which mak...Microgrids integrate distributed renewable energy resources, controllable loads and energy storage in a more economic and reliable fashion. Battery energy storage units are essential for microgrid operation, which make microgird become a strong coupling system in the time domain. Hence, the traditional methods of static dispatch are no longer suitable for microgrids. This paper proposes a dynamic economic dispatch method for microgrids. Considering microgrid as a discrete time system, the dynamic economic dispatch is to find the optimal control strategy for the system in finite time period. Based on this idea, the dynamic economic dispatch model for microgrids is established, and then the corresponding dynamic programming algorithm is designed. Finally, an example of microgrid is given, and the dynamic economic dispatch results are compared with that of the static dispatch. The comparison confirms the effectiveness of the proposed dynamic dispatch method.展开更多
The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking en...The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking energy feedback unit and battery energy storage unit is proposed,which provides green power for the station.In order to suppress the fluctuation of photovoltaic power generation and the intermittence of regenerative braking feedback energy,the energy management mode of microgrid is designed according to the illumination situation,braking energy feedback situation,battery state of charge and so on.In addition,a coordination control method based on virtual synchronous generator(VSG)is proposed to realize smooth switching among modes.Finally,the proposed energy management and coordination control method for elevated station microgrid is verified by Matlab/Simulink.The results show that the elevated station microgrid can operate safely and reliably under various energy management modes and realize smooth switching among modes.展开更多
Distribution networks face an increasing penetration of solar PV (photovoltaic) and small WTG (wind turbine generator) as well as other forms of micro-generation. To this scenario, one must add the dissemination o...Distribution networks face an increasing penetration of solar PV (photovoltaic) and small WTG (wind turbine generator) as well as other forms of micro-generation. To this scenario, one must add the dissemination of non-linear loads such as EV (electric vehicles). There is something in common between those loads and sources: the extensive use of power electronic converters with commutated switches. These devices may be a source of medium-to-high frequency harmonic distortion and their impact on the local distribution grid must be carefully assessed in order to evaluate their negative impacts on the network, on the existing conventional loads and also on other active devices. In this paper, methodologies to characterize effects such as: harmonics, network unbalances, damaging power line resonance conditions, and over/under voltages are described and applied to a real local grid configuration.展开更多
文摘在未来可再生电能传输和管理微网(future renewable electric energy delivery and management,FREEDM)中固态变压器间会因输出电压偏差及输出阻抗的不匹配而产生环流,孤岛模式下尤为严重,为此,在下垂控制器中引入固态变压器(solid state transformer,SST)间输出电压偏差反馈调节,减小输出电压相角差和幅值差;采用基于模糊控制理论的瞬时环流反馈,进行动态虚拟阻抗调节,使得SST输出阻抗按额定功率精确匹配。仿真及分析表明,电压偏差反馈调节配合动态虚拟阻抗控制可以有效地抑制SST间环流,同时提高SST输出电压的稳定性。
文摘Microgrids integrate distributed renewable energy resources, controllable loads and energy storage in a more economic and reliable fashion. Battery energy storage units are essential for microgrid operation, which make microgird become a strong coupling system in the time domain. Hence, the traditional methods of static dispatch are no longer suitable for microgrids. This paper proposes a dynamic economic dispatch method for microgrids. Considering microgrid as a discrete time system, the dynamic economic dispatch is to find the optimal control strategy for the system in finite time period. Based on this idea, the dynamic economic dispatch model for microgrids is established, and then the corresponding dynamic programming algorithm is designed. Finally, an example of microgrid is given, and the dynamic economic dispatch results are compared with that of the static dispatch. The comparison confirms the effectiveness of the proposed dynamic dispatch method.
基金National Natural Science Foundation of China(No.51367010)Science and Technology Program of Gansu Province(No.17JR5RA083)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)
文摘The rapid development of urban rail transit brings convenience to the public,but its huge energy consumption problem cannot be ignored.A microgrid composed of photovoltaic power generation unit,regenerative braking energy feedback unit and battery energy storage unit is proposed,which provides green power for the station.In order to suppress the fluctuation of photovoltaic power generation and the intermittence of regenerative braking feedback energy,the energy management mode of microgrid is designed according to the illumination situation,braking energy feedback situation,battery state of charge and so on.In addition,a coordination control method based on virtual synchronous generator(VSG)is proposed to realize smooth switching among modes.Finally,the proposed energy management and coordination control method for elevated station microgrid is verified by Matlab/Simulink.The results show that the elevated station microgrid can operate safely and reliably under various energy management modes and realize smooth switching among modes.
文摘Distribution networks face an increasing penetration of solar PV (photovoltaic) and small WTG (wind turbine generator) as well as other forms of micro-generation. To this scenario, one must add the dissemination of non-linear loads such as EV (electric vehicles). There is something in common between those loads and sources: the extensive use of power electronic converters with commutated switches. These devices may be a source of medium-to-high frequency harmonic distortion and their impact on the local distribution grid must be carefully assessed in order to evaluate their negative impacts on the network, on the existing conventional loads and also on other active devices. In this paper, methodologies to characterize effects such as: harmonics, network unbalances, damaging power line resonance conditions, and over/under voltages are described and applied to a real local grid configuration.