煤炭是当今社会的一种重要化石能源,煤机械设备是煤矿企业实现机械化的核心装备,对其工作状态进行监测具有重要的经济价值和安全需求。笔者综述了煤矿机械设备的主要故障类型、产生的原因以及故障的表现形式,根据信号采集时煤机设备是...煤炭是当今社会的一种重要化石能源,煤机械设备是煤矿企业实现机械化的核心装备,对其工作状态进行监测具有重要的经济价值和安全需求。笔者综述了煤矿机械设备的主要故障类型、产生的原因以及故障的表现形式,根据信号采集时煤机设备是否需要停机以及故障诊断的时效性,总结了机械故障诊断的方法及其特点;分析了不同类型无线网络传输技术、不同种类微能源技术的特点及其在煤矿中应用的可行性;同时,针对当前煤矿机械工作状态监测系统的不足,提出了基于微能源技术实现煤矿机械设备工作状态信息采集与发送系统自供电,结合Zigbee无线网络传输和通用分组无线服务技术(general packet ratio service,简称GPRS)通信方式实现煤矿机械设备工作状态监测系统自动化在线监测的发展方向。展开更多
Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. Thi...Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. This review summarizes recent development of catalysts used for fuel cells over the past 15 years. It is focused on polymer electrolyte membrane fuel cells as an environmentally benign and feasible energy source. Graphene is used as a promising support material for Pt catalysts. It ensures high catalyst loading, good electro- catalysis and stability. Attention has been drawn to structural sensitivity of the catalysts, as well as polymetallic and nanos- tructured catalysts in order to improve the oxygen reduction reaction. Characterization methods including electrochemical, microscopic and spectroscopic techniques are summarized with an overview of the latest technological advances in the field. Future perspective is given in a form of Pt-free catalysts, such as microbial fuel cells for long-term development.展开更多
文摘煤炭是当今社会的一种重要化石能源,煤机械设备是煤矿企业实现机械化的核心装备,对其工作状态进行监测具有重要的经济价值和安全需求。笔者综述了煤矿机械设备的主要故障类型、产生的原因以及故障的表现形式,根据信号采集时煤机设备是否需要停机以及故障诊断的时效性,总结了机械故障诊断的方法及其特点;分析了不同类型无线网络传输技术、不同种类微能源技术的特点及其在煤矿中应用的可行性;同时,针对当前煤矿机械工作状态监测系统的不足,提出了基于微能源技术实现煤矿机械设备工作状态信息采集与发送系统自供电,结合Zigbee无线网络传输和通用分组无线服务技术(general packet ratio service,简称GPRS)通信方式实现煤矿机械设备工作状态监测系统自动化在线监测的发展方向。
基金supported by the Danish Council for Independent Research|Technology and Production Sciences(DFF-1335-00330)
文摘Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. This review summarizes recent development of catalysts used for fuel cells over the past 15 years. It is focused on polymer electrolyte membrane fuel cells as an environmentally benign and feasible energy source. Graphene is used as a promising support material for Pt catalysts. It ensures high catalyst loading, good electro- catalysis and stability. Attention has been drawn to structural sensitivity of the catalysts, as well as polymetallic and nanos- tructured catalysts in order to improve the oxygen reduction reaction. Characterization methods including electrochemical, microscopic and spectroscopic techniques are summarized with an overview of the latest technological advances in the field. Future perspective is given in a form of Pt-free catalysts, such as microbial fuel cells for long-term development.