Optical coherence microscopy is applied to measure scattering media'sinternal defect, which based on low coherence interferometry and confocal microscopy. Opticalcoherence microscopy is more effective in the rejec...Optical coherence microscopy is applied to measure scattering media'sinternal defect, which based on low coherence interferometry and confocal microscopy. Opticalcoherence microscopy is more effective in the rejection of out of focus and multiple scatteredphotons originating further away of the focal plane. With the three-dimension scanning, the internaldefect is detected by measuring the thickness of different points on the sample. The axialresolution is 6 μm and lateral resolution is 1. 2 μm. This method is possessed of the advantagesover the other measurement method of scattering media, such as non-destruction and high-resolution.展开更多
Direct writing of graphene patterns and devices may significantly facilitate the application of graphene-based flexible electronics. In terms of scalability and cost efficiency, inkjet printing is very competitive ove...Direct writing of graphene patterns and devices may significantly facilitate the application of graphene-based flexible electronics. In terms of scalability and cost efficiency, inkjet printing is very competitive over other existing direct- writing methods. However, it has been challenging to obtain highly stable and clog-free graphene-based ink. Here, we report an alternative and highly efficient technique to directly print a reducing reagent on graphene oxide film to form conductive graphene patterns. By this "inkjet reduction" method, without using any other microfabrication technique, conductive graphene patterns and devices for various applications are obtained. The ionic nature of the reductant ink makes it clog-free and stable for continuous and large-area printing. The method shows self-limited reduction feature, which enables electrical conductivity of graphene patterns to be tuned within 5 orders of magnitude, reaching as high as 8,000 S.m-1. Furthermore, this method can be extended to produce noble metal/graphene composite patterns. The devices, including transistors, biosensors, and surface- enhanced Raman scattering substrates, demonstrate excellent functionalities. This work provides a new strategy to prepare large-area graphene-based devices that is low-cost and highly efficient, promising to advance research on graphene- based flexible electronics.展开更多
基金National Natural Science Foundation of China(60077031)
文摘Optical coherence microscopy is applied to measure scattering media'sinternal defect, which based on low coherence interferometry and confocal microscopy. Opticalcoherence microscopy is more effective in the rejection of out of focus and multiple scatteredphotons originating further away of the focal plane. With the three-dimension scanning, the internaldefect is detected by measuring the thickness of different points on the sample. The axialresolution is 6 μm and lateral resolution is 1. 2 μm. This method is possessed of the advantagesover the other measurement method of scattering media, such as non-destruction and high-resolution.
文摘Direct writing of graphene patterns and devices may significantly facilitate the application of graphene-based flexible electronics. In terms of scalability and cost efficiency, inkjet printing is very competitive over other existing direct- writing methods. However, it has been challenging to obtain highly stable and clog-free graphene-based ink. Here, we report an alternative and highly efficient technique to directly print a reducing reagent on graphene oxide film to form conductive graphene patterns. By this "inkjet reduction" method, without using any other microfabrication technique, conductive graphene patterns and devices for various applications are obtained. The ionic nature of the reductant ink makes it clog-free and stable for continuous and large-area printing. The method shows self-limited reduction feature, which enables electrical conductivity of graphene patterns to be tuned within 5 orders of magnitude, reaching as high as 8,000 S.m-1. Furthermore, this method can be extended to produce noble metal/graphene composite patterns. The devices, including transistors, biosensors, and surface- enhanced Raman scattering substrates, demonstrate excellent functionalities. This work provides a new strategy to prepare large-area graphene-based devices that is low-cost and highly efficient, promising to advance research on graphene- based flexible electronics.