Phase transitions, morphology changes, and oxidation mechanism of the ilmenite oxidation process were investigated. FeTi03 transforms to hematite and rutile when oxidation at 700-800 ℃, and pseudobrookite is formed w...Phase transitions, morphology changes, and oxidation mechanism of the ilmenite oxidation process were investigated. FeTi03 transforms to hematite and rutile when oxidation at 700-800 ℃, and pseudobrookite is formed when the oxidation temperature reaches 900 ℃. The initial ilmenite powder exhibits paramagnetism; however, after being oxidized at the intermediate temperature (800-850 ℃), the oxidation product exhibits weak ferromagnetism. The oxidation mechanism was discussed. The microstructure observations show that a lot of micro-pores emerge on the surfaces of ilmenite particles at the intermediate temperature, which is deemed to be caoable ofenhancin~ the mass transfer ofoxgen during oxidation.展开更多
基金Project(51074105) supported by the National Natural Science Foundation of ChinaProject(51225401) supported by the China National Funds for Distinguished Young Scientists
文摘Phase transitions, morphology changes, and oxidation mechanism of the ilmenite oxidation process were investigated. FeTi03 transforms to hematite and rutile when oxidation at 700-800 ℃, and pseudobrookite is formed when the oxidation temperature reaches 900 ℃. The initial ilmenite powder exhibits paramagnetism; however, after being oxidized at the intermediate temperature (800-850 ℃), the oxidation product exhibits weak ferromagnetism. The oxidation mechanism was discussed. The microstructure observations show that a lot of micro-pores emerge on the surfaces of ilmenite particles at the intermediate temperature, which is deemed to be caoable ofenhancin~ the mass transfer ofoxgen during oxidation.