The strength and fatigue fracture behavior of A1-Zn-Mg-Cu-Zr(-Sn) alloys were studied by performing tensile tests and fatigue crack propagation (FCP) tests. The microstructures of the experimental alloys were furt...The strength and fatigue fracture behavior of A1-Zn-Mg-Cu-Zr(-Sn) alloys were studied by performing tensile tests and fatigue crack propagation (FCP) tests. The microstructures of the experimental alloys were further analyzed using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM); phase analysis of these alloys was conducted with an X-ray diffraction (XRD). The results show that when Sn is included, growth of the recrystallization grains in the solution-treated A1-Zn-Mg-Cu-Zr alloy is obstructed, the precipitation-free zone (PFZ) of the overaged A1-Zn-Mg-Cu-Zr-Sn alloy becomes narrow, and the grain boundary precipitates are smaller. Consequently, the FCP resistance is higher. In addition, the overaged Sn-containing alloy has considerably higher tensile strength than the alloy without Sn.展开更多
The microstructure, the content of compounds, mechanical properties and fracture behavior of high vacuum die casting Mg-8Gd-3Y-0.4Zr alloy (mass fraction, %) under T4 condition and T6 condition were investigated. Th...The microstructure, the content of compounds, mechanical properties and fracture behavior of high vacuum die casting Mg-8Gd-3Y-0.4Zr alloy (mass fraction, %) under T4 condition and T6 condition were investigated. The microstructure for the as-cast Mg-8Gd-3Y-0.4Zr alloy mainly consists ofα-Mg and eutectic Mg24(Gd,Y)5 compound. After solution treatment, the eutectic compounds dissolve massively into the Mg matrix. The main composition of solution-treated alloys is supersaturated α-Mg and cuboid-shaped phase. The T4 heat treated samples have increasing cuboidal particles with the increase of heat treatment temperature, which turn out good mechanical properties. The optimum T4 heat treatment for high vacuum die cast Mg-8Gd-3Y-0.4Zr alloy is 475 ℃, 2 h according to microstructure results. The optimum ultimate strength and elongation of solution-treated Mg-8Gd-3Y-0.4Zr alloy are 222.1 MPa and 15.4%, respectively. The tensile fracture mode of the as-cast, and T6 heat treated alloys is transgranular quasi-cleavage fracture.展开更多
基金Project(2010CB731706) supported by the National Basic Research Program of China
文摘The strength and fatigue fracture behavior of A1-Zn-Mg-Cu-Zr(-Sn) alloys were studied by performing tensile tests and fatigue crack propagation (FCP) tests. The microstructures of the experimental alloys were further analyzed using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM); phase analysis of these alloys was conducted with an X-ray diffraction (XRD). The results show that when Sn is included, growth of the recrystallization grains in the solution-treated A1-Zn-Mg-Cu-Zr alloy is obstructed, the precipitation-free zone (PFZ) of the overaged A1-Zn-Mg-Cu-Zr-Sn alloy becomes narrow, and the grain boundary precipitates are smaller. Consequently, the FCP resistance is higher. In addition, the overaged Sn-containing alloy has considerably higher tensile strength than the alloy without Sn.
基金Projects(51171113,51301107)supported by the National Natural Science Foundation of ChinaProjects(2012M511089,2013T60444)supported by the China Postdoctoral Science FoundationProjects(2011BAE22B02,2011DFA50907)supported by the Ministry of Science and Technology of China
文摘The microstructure, the content of compounds, mechanical properties and fracture behavior of high vacuum die casting Mg-8Gd-3Y-0.4Zr alloy (mass fraction, %) under T4 condition and T6 condition were investigated. The microstructure for the as-cast Mg-8Gd-3Y-0.4Zr alloy mainly consists ofα-Mg and eutectic Mg24(Gd,Y)5 compound. After solution treatment, the eutectic compounds dissolve massively into the Mg matrix. The main composition of solution-treated alloys is supersaturated α-Mg and cuboid-shaped phase. The T4 heat treated samples have increasing cuboidal particles with the increase of heat treatment temperature, which turn out good mechanical properties. The optimum T4 heat treatment for high vacuum die cast Mg-8Gd-3Y-0.4Zr alloy is 475 ℃, 2 h according to microstructure results. The optimum ultimate strength and elongation of solution-treated Mg-8Gd-3Y-0.4Zr alloy are 222.1 MPa and 15.4%, respectively. The tensile fracture mode of the as-cast, and T6 heat treated alloys is transgranular quasi-cleavage fracture.