基于美国加州大学伯克利分校研制的有限元软件FEAP(Finite Element Analysis Program),联合应用弥散裂缝单元和离散裂缝单元,建立了砌体填充墙RC框架的精细化微观有限元模型。基于美国加州大学圣地亚哥分校UCSD的试验结果对有限元模型...基于美国加州大学伯克利分校研制的有限元软件FEAP(Finite Element Analysis Program),联合应用弥散裂缝单元和离散裂缝单元,建立了砌体填充墙RC框架的精细化微观有限元模型。基于美国加州大学圣地亚哥分校UCSD的试验结果对有限元模型进行了验证,对多层砌体填充墙RC框架进行了Pushover分析,研究了填充墙的裂缝开展、刚度变化、应力发展趋势,以及填充墙与RC框架的相互作用机制,研究了砌体填充墙RC框架的失效模式和抗震性能。展开更多
Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron mic...Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron microscopy, numerical simulation methods, peel and tensile examinations. The effect of CR and FR was comparatively analyzed. The results showed that the CR and FR laminated composites exhibited different effective plastic strain distributions of the Ti layer and Cu layer at the interface. The recrystallization texture, prismatic texture and pyramidal texture were developed in the Ti layer by CR, while the R-Goss texture and shear texture were developed in the Cu layer by CR. The typical deformation texture components were developed in the Ti layer and Cu layer of FR laminated composites. The CR laminated composites had higher bond strength, tensile strength and ductility.展开更多
The finite element model is established according to the experimental results,and then the experimental results are verified by simulation calculation.In terms of the combination of finite element analysis and experim...The finite element model is established according to the experimental results,and then the experimental results are verified by simulation calculation.In terms of the combination of finite element analysis and experiment,the effect of particle size of CuO and SnO_(2) on the stress,strain and microstructure of AgCuOSnO_(2) composite during hot extrusion was studied.The results illustrate that with the decrease of particle size,the dispersion of the second phase increases gradually,while the possibility of“tail shrinkage”of the billet decreases continuously;cubic CuO will evolve to fibrosis,and the degree of fibrosis will increase with the decrease of the particle size and ring clusters.Specifically,the degree of fibrosis at the middle end of the billet is higher than that at the front end,the degree of fibrosis at the front end is higher than that at the back end,and the degree of fibrosis on the surface is higher than that in the core;part of CuO fibers will bend,and the degree of buckling strength is positively correlated with the size of particles and their annular clusters.Additionally,there is fiber CuO in the front and back end of the billet that are inconsistent with the extrusion direction,and the degree of difference was negatively correlated with the particle size.展开更多
Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through f...Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through four different routes and condition, i.e. conventional gravity casting with and without refiner, rheocasting and SIMA process. The optical microstructures of the alloy have been used to develop representative volume elements(RVEs). Two different boundary conditions have been employed to simulate the deformation behavior of the alloy under uniaxial loading. Finally, the simulated stress-strain behavior of the alloy is compared with the experimental result. It is found that the microstructural morphology has a significant impact on stress and strain distribution and load carrying capacity. The eutectic phase always carries a higher load than the α(Al) phase. The globular α(Al) grains with thinner and uniformly distributed eutectic network provide a better stress and strain distribution. Owing to this, SIMA processed alloy has better stress and strain distribution than other processes. Finally, the simulated yield strength of the alloy is verified by experiment and they have great agreement.展开更多
After the success of the Daya Bay experiment, the Jiangmen Underground Neutrino Observatory (JUNO) was launched to measure neutrino-mass hierarchy and oscillation parameters and to study other neutrino physics. Its ...After the success of the Daya Bay experiment, the Jiangmen Underground Neutrino Observatory (JUNO) was launched to measure neutrino-mass hierarchy and oscillation parameters and to study other neutrino physics. Its central detector is set for antineutrinos from reactors, the Earth, the atmosphere, and the Sun. The main requirements of the central detector are con- tainment of 20 kt of liquid scintillator, as the target mass, and 3% energy resolution. It is about a ball-shape detector of 38.5 m with -75% coverage of PMT on its inner surface. The design of such a huge detector is a big challenge because it must meet the requirements for several different types of physics measurement and possess the feasibility and reliability in its structure and engineering, all at reasonable time and cost. One option for the JUNO central detector is a hyper-scale acrylic ball sub- merged in the water to shield the background. This paper proposes a structural scheme for such an acrylic ball that is supported by a stainless-steel truss, inspired by point-supported glass-curtain walls in civil engineering. The preliminary design of the scheme is completed and verified by finite element (FE) method using ABAQUS. FE analysis shows that the scheme can con- trol the stress level of the acrylic ball within the limit of 5 to 10 MPa, in accordance with the demand of the design objective of the central detector. The scheme is of outstanding global stability and allows various chocces on local connections. We prove that the scheme is of good feasibility and should be a reasonable option for the central detector.展开更多
文摘基于美国加州大学伯克利分校研制的有限元软件FEAP(Finite Element Analysis Program),联合应用弥散裂缝单元和离散裂缝单元,建立了砌体填充墙RC框架的精细化微观有限元模型。基于美国加州大学圣地亚哥分校UCSD的试验结果对有限元模型进行了验证,对多层砌体填充墙RC框架进行了Pushover分析,研究了填充墙的裂缝开展、刚度变化、应力发展趋势,以及填充墙与RC框架的相互作用机制,研究了砌体填充墙RC框架的失效模式和抗震性能。
基金financially supported by the National Key R&D Program of China (No.2018YFA0707300)the Natural Science Foundation of Shanxi Province,China (No.201801D221131)+2 种基金the National Natural Science Foundation of China (Nos.51905372,51904206,51805359,52075359)Shanxi Province Science and Technology Major Project,China (No.20181102011)China Postdoctoral Science Foundation (No.2020M670705)。
文摘Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron microscopy, numerical simulation methods, peel and tensile examinations. The effect of CR and FR was comparatively analyzed. The results showed that the CR and FR laminated composites exhibited different effective plastic strain distributions of the Ti layer and Cu layer at the interface. The recrystallization texture, prismatic texture and pyramidal texture were developed in the Ti layer by CR, while the R-Goss texture and shear texture were developed in the Cu layer by CR. The typical deformation texture components were developed in the Ti layer and Cu layer of FR laminated composites. The CR laminated composites had higher bond strength, tensile strength and ductility.
基金Project(2017FA027)supported by the Key Project of Science and Technology of Yunnan Province,China。
文摘The finite element model is established according to the experimental results,and then the experimental results are verified by simulation calculation.In terms of the combination of finite element analysis and experiment,the effect of particle size of CuO and SnO_(2) on the stress,strain and microstructure of AgCuOSnO_(2) composite during hot extrusion was studied.The results illustrate that with the decrease of particle size,the dispersion of the second phase increases gradually,while the possibility of“tail shrinkage”of the billet decreases continuously;cubic CuO will evolve to fibrosis,and the degree of fibrosis will increase with the decrease of the particle size and ring clusters.Specifically,the degree of fibrosis at the middle end of the billet is higher than that at the front end,the degree of fibrosis at the front end is higher than that at the back end,and the degree of fibrosis on the surface is higher than that in the core;part of CuO fibers will bend,and the degree of buckling strength is positively correlated with the size of particles and their annular clusters.Additionally,there is fiber CuO in the front and back end of the billet that are inconsistent with the extrusion direction,and the degree of difference was negatively correlated with the particle size.
文摘Finite element analysis has been carried out to understand the effect of various processing routes and condition on the microscale deformation behavior of Al–4.5 Cu–2 Mg alloy. The alloy has been developed through four different routes and condition, i.e. conventional gravity casting with and without refiner, rheocasting and SIMA process. The optical microstructures of the alloy have been used to develop representative volume elements(RVEs). Two different boundary conditions have been employed to simulate the deformation behavior of the alloy under uniaxial loading. Finally, the simulated stress-strain behavior of the alloy is compared with the experimental result. It is found that the microstructural morphology has a significant impact on stress and strain distribution and load carrying capacity. The eutectic phase always carries a higher load than the α(Al) phase. The globular α(Al) grains with thinner and uniformly distributed eutectic network provide a better stress and strain distribution. Owing to this, SIMA processed alloy has better stress and strain distribution than other processes. Finally, the simulated yield strength of the alloy is verified by experiment and they have great agreement.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA10010200)the Tsinghua University Initiative Scientific Research Program(Grant No.20131089288)
文摘After the success of the Daya Bay experiment, the Jiangmen Underground Neutrino Observatory (JUNO) was launched to measure neutrino-mass hierarchy and oscillation parameters and to study other neutrino physics. Its central detector is set for antineutrinos from reactors, the Earth, the atmosphere, and the Sun. The main requirements of the central detector are con- tainment of 20 kt of liquid scintillator, as the target mass, and 3% energy resolution. It is about a ball-shape detector of 38.5 m with -75% coverage of PMT on its inner surface. The design of such a huge detector is a big challenge because it must meet the requirements for several different types of physics measurement and possess the feasibility and reliability in its structure and engineering, all at reasonable time and cost. One option for the JUNO central detector is a hyper-scale acrylic ball sub- merged in the water to shield the background. This paper proposes a structural scheme for such an acrylic ball that is supported by a stainless-steel truss, inspired by point-supported glass-curtain walls in civil engineering. The preliminary design of the scheme is completed and verified by finite element (FE) method using ABAQUS. FE analysis shows that the scheme can con- trol the stress level of the acrylic ball within the limit of 5 to 10 MPa, in accordance with the demand of the design objective of the central detector. The scheme is of outstanding global stability and allows various chocces on local connections. We prove that the scheme is of good feasibility and should be a reasonable option for the central detector.