The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
Tremendous advances has been witnessed in the past few years in the lanthanide complexes mediated coordinative chain transfer polymerization(CCTP) of conjugated dienes. CCTP features catalyst economy, well-controlling...Tremendous advances has been witnessed in the past few years in the lanthanide complexes mediated coordinative chain transfer polymerization(CCTP) of conjugated dienes. CCTP features catalyst economy, well-controlling over both microstructure and architecture of the resulting polymers, and accessibility for novel(co)polymers. This review highlights the recent progresses made in the field of CCTP of dienes. After a brief introduction, the body of this review is divided into three parts:(1) principle of CCTP;(2) coordinative chain transfer homopolymerization of dienes;(3) coordinative chain transfer copolymerization of dienes.At the end, we present some challenges remaining in this area and our personal opinion regarding where this field should continue to develop. CCTP represents a novel strategy to prepare polydiene synthetic rubbers with controlled high molecular weight and narrow molecular weight distribution, which has reached the practical industrial application level, demonstrating a great potential in industrialization.展开更多
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
基金supported by the National Key R&D Program of China(Grant Nos.2017YFB0307100,2017YFB0307103)the National Basic Research Program of China(Grant Nos.2015CB654700,2015CB654702)
文摘Tremendous advances has been witnessed in the past few years in the lanthanide complexes mediated coordinative chain transfer polymerization(CCTP) of conjugated dienes. CCTP features catalyst economy, well-controlling over both microstructure and architecture of the resulting polymers, and accessibility for novel(co)polymers. This review highlights the recent progresses made in the field of CCTP of dienes. After a brief introduction, the body of this review is divided into three parts:(1) principle of CCTP;(2) coordinative chain transfer homopolymerization of dienes;(3) coordinative chain transfer copolymerization of dienes.At the end, we present some challenges remaining in this area and our personal opinion regarding where this field should continue to develop. CCTP represents a novel strategy to prepare polydiene synthetic rubbers with controlled high molecular weight and narrow molecular weight distribution, which has reached the practical industrial application level, demonstrating a great potential in industrialization.