The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These t...The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These techniques, such as X-ray tomography, could be applied for quality monitoring in the macadamia industry. The objectives of this study were to investigate the browning centre symptoms that usually occur in macadamia nuts-in-shell. The applied techniques included confocal microscopy, X-ray tomography and magnetic resonance imaging (MRI). Five different varieties of macadamia nuts (A38, 246, 816, 842 and Daddow) were selected to include distinct characteristics, such as drop pattern and growing location. Analysis of the microstructure of kernels by confocal microscopy showed the distribution of possible brown pigment compounds as well as the distribution of lipids, carbohydrates and proteins inside macadamia cells. Physical properties data, including shell density and seed to volume ratio, were obtained by X-ray tomography. Magnetic resonance diffusion tensor imaging used in this study showed marked differences in microstructure which indicate that different varieties exhibit different microstructures expressed as fraction ofanisotropy and apparent diffusion coefficient that appear to be related to the occurrence of the brown centre. Hence, the findings of this study have potential to improve the existing postharvest techniques used in the macadamia processing industry. They will be of benefit to the industry in terms of improved quality control and cost reduction.展开更多
文摘The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These techniques, such as X-ray tomography, could be applied for quality monitoring in the macadamia industry. The objectives of this study were to investigate the browning centre symptoms that usually occur in macadamia nuts-in-shell. The applied techniques included confocal microscopy, X-ray tomography and magnetic resonance imaging (MRI). Five different varieties of macadamia nuts (A38, 246, 816, 842 and Daddow) were selected to include distinct characteristics, such as drop pattern and growing location. Analysis of the microstructure of kernels by confocal microscopy showed the distribution of possible brown pigment compounds as well as the distribution of lipids, carbohydrates and proteins inside macadamia cells. Physical properties data, including shell density and seed to volume ratio, were obtained by X-ray tomography. Magnetic resonance diffusion tensor imaging used in this study showed marked differences in microstructure which indicate that different varieties exhibit different microstructures expressed as fraction ofanisotropy and apparent diffusion coefficient that appear to be related to the occurrence of the brown centre. Hence, the findings of this study have potential to improve the existing postharvest techniques used in the macadamia processing industry. They will be of benefit to the industry in terms of improved quality control and cost reduction.