Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether im...Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.展开更多
The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50...The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50 s-1. The deformed structures of the samples were observed by optical microscopy (OM), transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) analysis. The calculated activation energy is 147 kJ/mol, which is very close to the activation energy for lattice self-diffusion in aluminum (142 kJ/mol). Dynamic recovery is the dominant restoration mechanism during the deformation. At high strain rate of 50 s-1, temperature rise due to deformation heating leads to a significant flow softening. Microstructure observations indicated that the remaining softening after deformation heating correction at high strain rate and the softening observed at high temperature are associated with grain coarsening induced by grain boundary migration during dynamic recovery process.展开更多
A novel rheocasting process, self-inoculation method (SIM), was developed for the microstructure control of semisolid wrought Mg alloy. This process involves mixing between liquid alloy and particles of solid alloy ...A novel rheocasting process, self-inoculation method (SIM), was developed for the microstructure control of semisolid wrought Mg alloy. This process involves mixing between liquid alloy and particles of solid alloy (self-inoculants), subsequently pouring the mixed melt into a special designed multi-stream fluid director. The primary phase with dendritic morphology in the conventionally cast AZ31 alloy has readily transformed into near spherical one in the slurry produced by SIM from melt treatment temperature between 690 ℃ and 710 ℃ and self-inoculants addition of 3%-7%. Achievement of the non-dendritic microstructure at the higher melt treatment temperature requires more self-inoculants addition or decreases in the slope angle of fluid director. Primary phase in the slurry thus produced has attained an ideally globular morphology after isothermal holding at 620 ℃ for 30 s. The increasing holding time leads to decrease of shape factor but the coarsening of particle size. The spheroidization and coarsening evolution process of solid particles during the isothermal holding were analyzed by Lifshitz-Slyozov-Wagner (LSW) theory.展开更多
The hot deformation behavior of Al-Zn-Mg-0.25Sc-Zr alloy and its microstructural evolution were investigated by isothermal axisymmetric hot compression tests at temperatures from 340 to 500°C and strain rates ran...The hot deformation behavior of Al-Zn-Mg-0.25Sc-Zr alloy and its microstructural evolution were investigated by isothermal axisymmetric hot compression tests at temperatures from 340 to 500°C and strain rates ranging from 0.001 to 10 s -1 .The steady flow stress increased with increasing the strain rate or decreasing the deformation temperature,which can be described by a hyperbolic-sine constitutive equation with the deformation activation energy of 150.25 kJ/mol.The tendency of dynamic recrystallization enhanced at high deforming temperatures and low strain rates,which corresponded to low Z values.With decreasing Z value,the main softening mechanism of the alloy transformed from dynamic recovery to dynamic recrystallization, correspondingly,the subgrain size increased and the dislocation density decreased.展开更多
A sloping semisolid rheo-rolling process of Mg-3Sn-1Mn alloy was developed, and the effects of process parameters on the microstructure and mechanical properties of Mg-3Sn-lMn alloy strip were studied. The results sho...A sloping semisolid rheo-rolling process of Mg-3Sn-1Mn alloy was developed, and the effects of process parameters on the microstructure and mechanical properties of Mg-3Sn-lMn alloy strip were studied. The results show that the primary grain average diameter of the strip increases with the increase of the roll speed. The primary grain average diameter decreases firstly and then increases with the increase of the vibration frequency, and the tensile strength and elongation of the strip increase firstly and then decrease with the increase of the vibration frequency. The primary grain average diameter increases with the increase of casting temperature, and the tensile strength and elongation of the strip decrease correspondingly. When the casting temperature is 670℃, the roll speed is 52 mm/s, and the vibration frequency is 60 Hz, Mg-3Sn-1Mn alloy strip with good properties is produced. The mechanical properties of the present product are higher than those of Mg-3Sn-lMn alloy casting with the addition of 0.87% Ce (mass fraction).展开更多
It has been known that the productivity of artesian wells is strongly dependent on the rheological properties of crude oils. This work targets two deep artesian wells(>5000 m) that are producing heavy crude oil. Th...It has been known that the productivity of artesian wells is strongly dependent on the rheological properties of crude oils. This work targets two deep artesian wells(>5000 m) that are producing heavy crude oil. The impacts of well conditions including temperature, pressure and shear rate, on the crude oil rheology were comprehensively investigated and correlated using several empirical rheological models. The experimental data indicate that this heavy oil is very sensitive to temperature as result of microstructure change caused by hydrogen bonding. The rheological behavior of the heavy oil is also significantly impacted by the imposed pressure, i.e., the viscosity flow activation energy(Eμ) gently increases with the increasing pressure. The viscosity–shear rate data are well fitted to the power law model at low temperature. However, due to the transition of fluid feature at high temperature(Newtonian fluid), the measured viscosity was found to slightly deviate from the fitting data. Combining the evaluated correlations, the viscosity profile of the heavy crude oil in these two deep artesian wells as a function of well depth was predicted using the oilfield producing data.展开更多
The Williamson-Hall and uniaxial compression methods were used to study the variations of the micro-strain and stress-strain relations in WC powders after jet milling and ball milling, respectively. The rupture behavi...The Williamson-Hall and uniaxial compression methods were used to study the variations of the micro-strain and stress-strain relations in WC powders after jet milling and ball milling, respectively. The rupture behavior of agglomerates in WC powders was investigated. Meanwhile, the as-obtained WC powders treated by different milling methods were used to fabricate WC-10%Co cemented carbides, followed by the performance assessment of cemented carbides. The results show that the micro-strain of the jet-milled WC powders decreases significantly compared with that of the ball-milled WC powders, and that the cemented carbides prepared by jet-milled WC powders exhibit excellent properties with a transverse-rupture strength of 4260 MPa, due to the elimination of agglomerates and the reduction of lattice strain.展开更多
It is economically advantageous to cast wrought aluminum alloys directly into near-net-shape components.The objective of the present work is to take advantage of the rheoforming with 7075 alloy to improve the competit...It is economically advantageous to cast wrought aluminum alloys directly into near-net-shape components.The objective of the present work is to take advantage of the rheoforming with 7075 alloy to improve the competitiveness of this emerging technology in the manufacture of wrought aluminum alloy.High quality semi-solid slurry was produced,in which primary α(Al) presents in diameter of 62 μm and shape factor of 0.78 and features no eutectics entrapped.Higher forming pressure results in small grain size,improved shape factor and higher density.Especially,rheoforming can effectively reduce the occurrence of hot tearing.The average yield strength and elongation of the rheoformed samples in the T6 condition are 483 MPa and 8%,respectively.展开更多
A brief review of the former studies on the mechanisms of soil rheology and microstructure is presented. Then a microstructure model and a set of rheological constitutive relations for sott clays, which describe how t...A brief review of the former studies on the mechanisms of soil rheology and microstructure is presented. Then a microstructure model and a set of rheological constitutive relations for sott clays, which describe how the rheological consolidation settlement develops, are established in the framework of the catastrophe theory. The validity of this model is verified by a series of rheological consolidation experiments with different loading rates. The experimental data show that creep deformation can be clearly observed in these tests, and the consolidation settlement is loading rate dependent. The characteristics of the deformation can be explained and reproduced successfully using the model. It can be concluded that only the biggest set of voids would collapse for one load increment. Parameters in the model, k and η, are gained by curve fitting. With only two free parameters, good fits of the data are achieved.展开更多
Impact polypropylene copolymer (IPC), named polypropylene catalloy, not only possesses excellent impact property, but also presents good rigidity. Its superior performances result from the complicated composition and ...Impact polypropylene copolymer (IPC), named polypropylene catalloy, not only possesses excellent impact property, but also presents good rigidity. Its superior performances result from the complicated composition and microstructure. In the present article, recent progress in the studies on microstructure, morphology, crystallization and rheological behavior of IPC is summarized, and findings of the authors and their collaborators are reported. In general, IPC is divided into three components, i.e., ethylene-propylene random copolymer (EPR), a series of different segment lengths ethylene-propylene copolymer (EbP) and propylene homopolymer. The reasonable macromolecular structures of EbP and a multilayered core-shell model of dispersed phase structure in IPC were proposed, in which the dispersed phase consists of an outer EbP shell, an inner EPR layer and an EbP core. It is found that the annealing at melt-state may lead to an abnormal phase inversion, and the phase inversion disappears when temperature cools down to room temperature. The cause of phase inversion is ascribed to the existence of EbP component, which results in the stronger activity of the dispersed phase. The crystalline structure and morphologic results confirm the formation of β-iPP in IPC. Furthermore, it is found that the ethylene content in IPC and cooling rate of the samples have an important influence on the formation of β-iPP. Based on the crystallization kinetics analyzed by Lauritzen-Hoffman theory, crystallization behavior of different IPC samples is discussed and it is proposed that the dilution effect of ethylene propylene copolymer has a more remarkable influence on surface nucleation than on crystal growth. In addition, annealing at high temperature can result in the changes of chain structure for IPC, and this instability is ascribed to the oxidative degradation and crosslink reaction mainly in iPP component.展开更多
The AI-AIN-Si composites were prepared in the gas-in-liquid in situ synthesized flow-reaction-system, which was implemented by a powder metallurgy and reaction sin- tering route. The experimental results showed that A...The AI-AIN-Si composites were prepared in the gas-in-liquid in situ synthesized flow-reaction-system, which was implemented by a powder metallurgy and reaction sin- tering route. The experimental results showed that A1-AIN- 50SiB material (prepared by ball-milling powders) and AI- AIN-50SiM material (prepared by mixing powders) exhibited the semi-continuous Si structures and the isolated Si islands, respectively. Subsequently, the AI-AIN-50Si materials were selected as the model materials by phase identification and microstructure analysis. The dynamic microstructural evolu- tion of AI-AIN-50Si materials was investigated using the computational fluid dynamics (CFD) method. Mathematical models and simulation results showed that the in situ synthesis of AIN was strongly influenced by the structure and the flow- path ((Cg,N2/lg,N2)+(Cs,AlN/ls,AiN)). The flow paths of AI-AIN-50Si^B material were restricted by the semi-continuous Si. These Si structures can promote the formation of the strong turbulence with gradually weakened fluctuation, so that the in situ synthesis of AIN was interconnected and surrounded by an interpenetrating Si network. In contrast, the flow paths of AI- AIN-50Si^B material can easily pass through the isolated Si due to its mild turbulence with linear relationship. As a result, AIN was separated by the isolated Si and agglomerated in the matrix. Overall, the present work provides new insights into dynamic microstructural evolution in in situ reaction sinter- ing systems.展开更多
Herein the biowaste by-product spent coffee grounds(SCGs)from coffee industry were incorporated into asphalt binders for performance enhancement.From the analysis of Fourier transform infrared spectroscopy(FTIR),diffe...Herein the biowaste by-product spent coffee grounds(SCGs)from coffee industry were incorporated into asphalt binders for performance enhancement.From the analysis of Fourier transform infrared spectroscopy(FTIR),differential scanning calorimetry(DSC),dynamic shear rheometer(DSR),and Brookfield viscosity rheometer,it is confirmed that SCGs have potential prospects as bio-waste modifiers in the application of sustainable pavements.Results demonstrated that the modification process was mainly based on physical reinforcement.Compared with that of the neat asphalt,the shearing stress-resistant ability and high-temperature performance of the SCGs modified binders with the appropriate addition presented a bit of improvement;whereas the binders with 1%and 3%SCGs exhibited remarkably enhanced low-temperature stability.However,notable weaknesses of practical performance were shown for the binder with excessive content of SCGs,indicating the necessity of proportion selecting before application.展开更多
文摘Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites.
基金Project(51075132)supported by the National Natural Science Foundation of ChinaProject(20090161110027)supported by the Doctoral Fund of Ministry of Education of ChinaProject(2011BAG03B02)supported by National Key Technology R&D Program during the 12th Five-Year Plan Period,China
文摘The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 °C and strain rates between 0.05-50 s-1. The deformed structures of the samples were observed by optical microscopy (OM), transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) analysis. The calculated activation energy is 147 kJ/mol, which is very close to the activation energy for lattice self-diffusion in aluminum (142 kJ/mol). Dynamic recovery is the dominant restoration mechanism during the deformation. At high strain rate of 50 s-1, temperature rise due to deformation heating leads to a significant flow softening. Microstructure observations indicated that the remaining softening after deformation heating correction at high strain rate and the softening observed at high temperature are associated with grain coarsening induced by grain boundary migration during dynamic recovery process.
基金Project (2007CB613700) supported by the National Basic Research Program of ChinaProject (50964010) supported by the National Natural Science Foundation of China
文摘A novel rheocasting process, self-inoculation method (SIM), was developed for the microstructure control of semisolid wrought Mg alloy. This process involves mixing between liquid alloy and particles of solid alloy (self-inoculants), subsequently pouring the mixed melt into a special designed multi-stream fluid director. The primary phase with dendritic morphology in the conventionally cast AZ31 alloy has readily transformed into near spherical one in the slurry produced by SIM from melt treatment temperature between 690 ℃ and 710 ℃ and self-inoculants addition of 3%-7%. Achievement of the non-dendritic microstructure at the higher melt treatment temperature requires more self-inoculants addition or decreases in the slope angle of fluid director. Primary phase in the slurry thus produced has attained an ideally globular morphology after isothermal holding at 620 ℃ for 30 s. The increasing holding time leads to decrease of shape factor but the coarsening of particle size. The spheroidization and coarsening evolution process of solid particles during the isothermal holding were analyzed by Lifshitz-Slyozov-Wagner (LSW) theory.
基金Project(2012CB619503)supported by the High-tech Research and Development Program of China
文摘The hot deformation behavior of Al-Zn-Mg-0.25Sc-Zr alloy and its microstructural evolution were investigated by isothermal axisymmetric hot compression tests at temperatures from 340 to 500°C and strain rates ranging from 0.001 to 10 s -1 .The steady flow stress increased with increasing the strain rate or decreasing the deformation temperature,which can be described by a hyperbolic-sine constitutive equation with the deformation activation energy of 150.25 kJ/mol.The tendency of dynamic recrystallization enhanced at high deforming temperatures and low strain rates,which corresponded to low Z values.With decreasing Z value,the main softening mechanism of the alloy transformed from dynamic recovery to dynamic recrystallization, correspondingly,the subgrain size increased and the dislocation density decreased.
基金Project(51222405) supported by the National Science Foundation of Outstanding Young Scholars of ChinaProject(51034002) supported by the National Natural Science Foundation of China+1 种基金Project(132002) supported by the Fok Ying Tong Education FoundationProject (2011CB610405) supported by the National Basic Research Program of China
文摘A sloping semisolid rheo-rolling process of Mg-3Sn-1Mn alloy was developed, and the effects of process parameters on the microstructure and mechanical properties of Mg-3Sn-lMn alloy strip were studied. The results show that the primary grain average diameter of the strip increases with the increase of the roll speed. The primary grain average diameter decreases firstly and then increases with the increase of the vibration frequency, and the tensile strength and elongation of the strip increase firstly and then decrease with the increase of the vibration frequency. The primary grain average diameter increases with the increase of casting temperature, and the tensile strength and elongation of the strip decrease correspondingly. When the casting temperature is 670℃, the roll speed is 52 mm/s, and the vibration frequency is 60 Hz, Mg-3Sn-1Mn alloy strip with good properties is produced. The mechanical properties of the present product are higher than those of Mg-3Sn-lMn alloy casting with the addition of 0.87% Ce (mass fraction).
基金Supported by the National Key Science&Technology Projects during 13th Five-Year Plan(2016ZX05053-003)Young Scholars Development fund of SWPU(201499010121)
文摘It has been known that the productivity of artesian wells is strongly dependent on the rheological properties of crude oils. This work targets two deep artesian wells(>5000 m) that are producing heavy crude oil. The impacts of well conditions including temperature, pressure and shear rate, on the crude oil rheology were comprehensively investigated and correlated using several empirical rheological models. The experimental data indicate that this heavy oil is very sensitive to temperature as result of microstructure change caused by hydrogen bonding. The rheological behavior of the heavy oil is also significantly impacted by the imposed pressure, i.e., the viscosity flow activation energy(Eμ) gently increases with the increasing pressure. The viscosity–shear rate data are well fitted to the power law model at low temperature. However, due to the transition of fluid feature at high temperature(Newtonian fluid), the measured viscosity was found to slightly deviate from the fitting data. Combining the evaluated correlations, the viscosity profile of the heavy crude oil in these two deep artesian wells as a function of well depth was predicted using the oilfield producing data.
基金Project(2016GZ0290) supported by the Key Technology R&D Program of Sichuan Province,ChinaProject(2019CDXYCL0031) supported by the Fundamental Research Funds for the Central Universities,China
文摘The Williamson-Hall and uniaxial compression methods were used to study the variations of the micro-strain and stress-strain relations in WC powders after jet milling and ball milling, respectively. The rupture behavior of agglomerates in WC powders was investigated. Meanwhile, the as-obtained WC powders treated by different milling methods were used to fabricate WC-10%Co cemented carbides, followed by the performance assessment of cemented carbides. The results show that the micro-strain of the jet-milled WC powders decreases significantly compared with that of the ball-milled WC powders, and that the cemented carbides prepared by jet-milled WC powders exhibit excellent properties with a transverse-rupture strength of 4260 MPa, due to the elimination of agglomerates and the reduction of lattice strain.
基金Projects(50804023,50474007) supported by the National Natural Science Foundation of ChinaProject(GJJ08006) supported by the Jiangxi Provincial Education Department,China
文摘It is economically advantageous to cast wrought aluminum alloys directly into near-net-shape components.The objective of the present work is to take advantage of the rheoforming with 7075 alloy to improve the competitiveness of this emerging technology in the manufacture of wrought aluminum alloy.High quality semi-solid slurry was produced,in which primary α(Al) presents in diameter of 62 μm and shape factor of 0.78 and features no eutectics entrapped.Higher forming pressure results in small grain size,improved shape factor and higher density.Especially,rheoforming can effectively reduce the occurrence of hot tearing.The average yield strength and elongation of the rheoformed samples in the T6 condition are 483 MPa and 8%,respectively.
基金Project(51079126) supported by the National Natural Science Foundation of ChinaProject(Y1090971) supported by the Natural Science Foundation of Zhejiang Province, China
文摘A brief review of the former studies on the mechanisms of soil rheology and microstructure is presented. Then a microstructure model and a set of rheological constitutive relations for sott clays, which describe how the rheological consolidation settlement develops, are established in the framework of the catastrophe theory. The validity of this model is verified by a series of rheological consolidation experiments with different loading rates. The experimental data show that creep deformation can be clearly observed in these tests, and the consolidation settlement is loading rate dependent. The characteristics of the deformation can be explained and reproduced successfully using the model. It can be concluded that only the biggest set of voids would collapse for one load increment. Parameters in the model, k and η, are gained by curve fitting. With only two free parameters, good fits of the data are achieved.
基金supported by the National Basic Research Program of China (2005CB623800)National Natural Science Foundation of China (51173157)Natural Science Foundation of Zhejiang Province (Y4100314)
文摘Impact polypropylene copolymer (IPC), named polypropylene catalloy, not only possesses excellent impact property, but also presents good rigidity. Its superior performances result from the complicated composition and microstructure. In the present article, recent progress in the studies on microstructure, morphology, crystallization and rheological behavior of IPC is summarized, and findings of the authors and their collaborators are reported. In general, IPC is divided into three components, i.e., ethylene-propylene random copolymer (EPR), a series of different segment lengths ethylene-propylene copolymer (EbP) and propylene homopolymer. The reasonable macromolecular structures of EbP and a multilayered core-shell model of dispersed phase structure in IPC were proposed, in which the dispersed phase consists of an outer EbP shell, an inner EPR layer and an EbP core. It is found that the annealing at melt-state may lead to an abnormal phase inversion, and the phase inversion disappears when temperature cools down to room temperature. The cause of phase inversion is ascribed to the existence of EbP component, which results in the stronger activity of the dispersed phase. The crystalline structure and morphologic results confirm the formation of β-iPP in IPC. Furthermore, it is found that the ethylene content in IPC and cooling rate of the samples have an important influence on the formation of β-iPP. Based on the crystallization kinetics analyzed by Lauritzen-Hoffman theory, crystallization behavior of different IPC samples is discussed and it is proposed that the dilution effect of ethylene propylene copolymer has a more remarkable influence on surface nucleation than on crystal growth. In addition, annealing at high temperature can result in the changes of chain structure for IPC, and this instability is ascribed to the oxidative degradation and crosslink reaction mainly in iPP component.
基金supported by the financial support of the National Natural Science Foundation of China (51171146 and 51101177)the Program for Key Science and Technology Innovative Research Team of Shaanxi Province (2013KCT-05)
文摘The AI-AIN-Si composites were prepared in the gas-in-liquid in situ synthesized flow-reaction-system, which was implemented by a powder metallurgy and reaction sin- tering route. The experimental results showed that A1-AIN- 50SiB material (prepared by ball-milling powders) and AI- AIN-50SiM material (prepared by mixing powders) exhibited the semi-continuous Si structures and the isolated Si islands, respectively. Subsequently, the AI-AIN-50Si materials were selected as the model materials by phase identification and microstructure analysis. The dynamic microstructural evolu- tion of AI-AIN-50Si materials was investigated using the computational fluid dynamics (CFD) method. Mathematical models and simulation results showed that the in situ synthesis of AIN was strongly influenced by the structure and the flow- path ((Cg,N2/lg,N2)+(Cs,AlN/ls,AiN)). The flow paths of AI-AIN-50Si^B material were restricted by the semi-continuous Si. These Si structures can promote the formation of the strong turbulence with gradually weakened fluctuation, so that the in situ synthesis of AIN was interconnected and surrounded by an interpenetrating Si network. In contrast, the flow paths of AI- AIN-50Si^B material can easily pass through the isolated Si due to its mild turbulence with linear relationship. As a result, AIN was separated by the isolated Si and agglomerated in the matrix. Overall, the present work provides new insights into dynamic microstructural evolution in in situ reaction sinter- ing systems.
文摘Herein the biowaste by-product spent coffee grounds(SCGs)from coffee industry were incorporated into asphalt binders for performance enhancement.From the analysis of Fourier transform infrared spectroscopy(FTIR),differential scanning calorimetry(DSC),dynamic shear rheometer(DSR),and Brookfield viscosity rheometer,it is confirmed that SCGs have potential prospects as bio-waste modifiers in the application of sustainable pavements.Results demonstrated that the modification process was mainly based on physical reinforcement.Compared with that of the neat asphalt,the shearing stress-resistant ability and high-temperature performance of the SCGs modified binders with the appropriate addition presented a bit of improvement;whereas the binders with 1%and 3%SCGs exhibited remarkably enhanced low-temperature stability.However,notable weaknesses of practical performance were shown for the binder with excessive content of SCGs,indicating the necessity of proportion selecting before application.