The CuZrAl bulk metallic glass with minor-addition of Fe was prepared by rapid quenching method. The structures were examined by X-ray diffraction (XRD). The effect of Fe on the glass-forming ability was studied by ...The CuZrAl bulk metallic glass with minor-addition of Fe was prepared by rapid quenching method. The structures were examined by X-ray diffraction (XRD). The effect of Fe on the glass-forming ability was studied by differential scanning calorimetry (DSC). The minor-addition of Fe obviously extends the supercooled liquid region ΔTx. The plastic strain of the Cu44Zr48Al7Fe bulk metallic glass is about 1.5%. The microstructures were examined by transmission electron microscopy (TEM). It is found that when 1%-2% Fe (mole fraction) were introduced into the CuZrAl alloy matrix, nanoscale phase separation occurs in the as-prepared Cu44Zr48Al7Fe bulk metallic glass.展开更多
The properties of aqueous two-phase system (ATPS) of mixed solution containing gemini cationic surfactant trimethylene-1,3-bis(dodecyldimethyl ammonium) bromide (12-3-12, 2Br-) and traditional anionic surfactant sodiu...The properties of aqueous two-phase system (ATPS) of mixed solution containing gemini cationic surfactant trimethylene-1,3-bis(dodecyldimethyl ammonium) bromide (12-3-12, 2Br-) and traditional anionic surfactant sodium dodecyl sulfate (SDS) with or without added salt have been studied. An ATPS is formed in a narrow region of the ternary phase diagram different from that of traditional aqueous cationic-anionic surfactant systems. In ATPS region, the lowest total concentration of surfactants varies with the mixing ratio of geminis to SDS. Photographs obtained from freeze-etching, negative-staining and transmission electron microscopy show that the microstructures of two phases are different from each other. Micelles and vesicles can coexist in a single phase. The addition of salts can change the phase diagram of ATPS. Furthermore, the added salts promote the aggregation of rod-like micelles to form coarse network structure that increase the viscosity of solutions. The negative ions of the added salts are the determining factor.展开更多
基金Project (2010ZDJH10) supported by the Nanjing University of Science and Technology Research Funding, ChinaProject (BK2007213) supported by the Natural Science Foundation of Jiangsu Province, China
文摘The CuZrAl bulk metallic glass with minor-addition of Fe was prepared by rapid quenching method. The structures were examined by X-ray diffraction (XRD). The effect of Fe on the glass-forming ability was studied by differential scanning calorimetry (DSC). The minor-addition of Fe obviously extends the supercooled liquid region ΔTx. The plastic strain of the Cu44Zr48Al7Fe bulk metallic glass is about 1.5%. The microstructures were examined by transmission electron microscopy (TEM). It is found that when 1%-2% Fe (mole fraction) were introduced into the CuZrAl alloy matrix, nanoscale phase separation occurs in the as-prepared Cu44Zr48Al7Fe bulk metallic glass.
基金the National Natural Science Foundation of China (No. 20025618, No. 20236010) Shanghai Municipal Education Commission of China.
文摘The properties of aqueous two-phase system (ATPS) of mixed solution containing gemini cationic surfactant trimethylene-1,3-bis(dodecyldimethyl ammonium) bromide (12-3-12, 2Br-) and traditional anionic surfactant sodium dodecyl sulfate (SDS) with or without added salt have been studied. An ATPS is formed in a narrow region of the ternary phase diagram different from that of traditional aqueous cationic-anionic surfactant systems. In ATPS region, the lowest total concentration of surfactants varies with the mixing ratio of geminis to SDS. Photographs obtained from freeze-etching, negative-staining and transmission electron microscopy show that the microstructures of two phases are different from each other. Micelles and vesicles can coexist in a single phase. The addition of salts can change the phase diagram of ATPS. Furthermore, the added salts promote the aggregation of rod-like micelles to form coarse network structure that increase the viscosity of solutions. The negative ions of the added salts are the determining factor.